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Many winter deep low-pressure systems passing over Western Europe have the

potential to induce significant storm surge levels along the coast of the North Sea. The

accompanying frontal systems lead to large rainfall amounts, which can result in river

discharges exceeding critical thresholds. The risk of disruptive societal impact increases

strongly if river runoff and storm-surge peak occur near-simultaneously. For the Rhine

catchment and the Dutch coastal area, existing studies suggest that no such relation is

present at time lags shorter than 6 days. Here we re-investigate the possibility of finding

near-simultaneous storm surge and extreme river discharge using an extended data

set derived from a storm surge model (WAQUA/DCSMv5) and two hydrological river-

discharge models (SPHY and HBV96) forced with conditions from a high-resolution

(0.11◦/12 km) regional climate model (RACMO2) in ensemble mode (16 × 50 years).

We find that the probability for finding a co-occurrence of extreme river discharge at

Lobith and storm surge conditions at Hoek van Holland are up to four times higher (than

random chance) for a broad range of time lags (−2 to 10 days, depending on exact

threshold). This highlights that the hazard of a co-occurrence of high river discharge and

coastal water levels cannot be neglected in a robust risk assessment.

Keywords: compound events, dependence, joint distribution, storm surge, uncertainty

INTRODUCTION

Floods are a major cause of casualties due to natural disasters, with over 6.8 million deaths globally
during the 20th century (Doocy et al., 2013), and an annual average loss of 104 billion US$ (Blöschl
et al., 2017). Rivers floods are the result of a complex chain of atmospheric and surface hydrological
processes (Hall et al., 2014; Merz et al., 2014). Atmospheric circulation patterns distribute the
necessary precipitation on a variety of spatial scales and intensities (Prudhomme and Genevier,
2011). Following the characteristics of the local hydrology the water then aggregates into streams
and rivers, ultimately transporting river runoff to coastal estuaries. On its way to the sea, the main
river is fed from several sub-catchments and receives input from reservoirs that act on longer time
scales than runoff routing processes. These long time scales introduce a dependence on antecedent
conditions, for example ice and snowmelt from high-altitude glaciers and/or snow reserves located
in the headwaters, soil moisture retention, and baseflow processes. In low-lying countries like
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the Netherlands, flood defense infrastructure protects the densely
populated hinterland. Risk of river flooding therefore typically
only occurs in the winter season when deep Atlantic low-pressure
systems (extratropical cyclones) precipitate large amounts of
water over the European Alps and Central Europe.

Traditionally floods are defined by a set of correlated random
variables like flood peak, flood volume, and duration (Chebana
and Ouarda, 2009; Brunner et al., 2016). However, in the
assessment of flood events this univariate approach to discharge
is only suitable when dependencies between the contributing
variables are known or absent (Yue and Rasmussen, 2002;
Serinaldi et al., 2015). Ignoring the dependencies may
lead to severe over or under estimation of the flood risk
(De Michele et al., 2005).

Coastal regions are threatened not only by river flooding.
Storm surges and sea-level rise provide additional risk to flooding
(Olbert et al., 2017; Wahl et al., 2017). Atlantic cyclones are
prime candidates to cause both storm surges and large-scale
precipitation over western and central Europe (Ulbrich et al.,
2009; Hawcroft et al., 2012). Since storm surges find their origin
in the very same Atlantic winter storms that also bring large
amounts of precipitation, possible relations between the two
factors play a major role in the assessment of flood risks. If
high coastal water levels occur simultaneously with extreme river
discharge events, flood risk increases as the river is not able to
discharge its water at the outlet, eventually causing river water
levels to rise (van den Hurk et al., 2015). Further, projected sea-
level rise will strongly amplify this risk (van den Hurk et al.,
2014; Vries et al., 2014; Wahl et al., 2015). Previous studies
investigated the probability of joint occurrence of storm surge
and precipitation/river floods based on observed data along the
British, Australian, and United States coasts and Dutch coasts
(Svensson and Jones, 2004; Geerse, 2013; Zheng et al., 2013; Wahl
et al., 2017). In literature, these sets of joint extreme events are
categorized as compound events. Their societal importance and
association to risk are well discussed by Seneviratne et al. (2012),
Leonard et al. (2014), and Hazeleger et al. (2015).

Inclusion of tail dependence, i.e., the probability that a
given variable exceeds a certain threshold given the exceedance
probability of a threshold by another variable, is necessary for
the investigation of joint extremes events (Joe, 1997). Poulin et al.
(2007), who used families of copulas to study the joint behavior of
river flood peaks and flood volumes, demonstrated that resulting
joint return periods are significantly sensitive to the choice of the
copula model and inclusion of tail dependence in the analysis.
Recent studies, such as Bevacqua et al. (2017) and Moftakhari
et al. (2017) for the Italy and United States coasts, respectively,
further explored the importance of multivariate (copula) analysis
of compound events related to coastal flooding including sea
water level and river discharge. Also, these studies confirmed
a substantial decrease in return periods if the compound
occurrence probability of related events was considered.

For the Rhine river catchment, previous studies have
investigated those compound events based on observations,
reanalysis products and model simulations. By using a coarse-
resolution global climate model ensemble, Kew et al. (2013)
showed that low pressure systems over the North Sea can

lead to compound occurrence of extreme storm surges and
precipitation affecting the Dutch coast. Proxies for storm surge
and river runoff were used, namely north-westerly winds and
multi-day precipitation sums. In an attempt to use more realistic
data to assess the statistical relationship between surge and
river discharge, Klerk et al. (2015) subsequently used variables
diagnosed from hydrological, hydraulic and storm surge models.
In their coarse-resolution dataset covering the relatively short
historical period from 1981 to 2010 they found a clear correlation
between the two variables, but only when a substantial time lag
of 6 days was taken into account. This is the time scale needed
to transport excess precipitation peak in the Rhine catchment
to the river outlet. Accordingly, they conclude that there is no
increased risk at simultaneous occurrence (zero lag). However,
an in-depth investigation of the uncertainty introduced by the
hydrological and storm surge model to the time dependence
correlation was not performed.

Here, we build on the findings of the previous studies and
extend them by including the application of (a) a fine resolution
climate model, (b) a large sample of data (800 years) obtained
from a climate model ensemble, and (c) two different regimes of
hydrological models. The use of large sample of data obtained
from a fine resolution climate model ensemble provides a
better insight into the statistical connection between the two
variables (Wahl et al., 2015; Wu et al., 2018) than possible in
previous assessments in Rhine which used either samples from
observations limited to the past 30–40 years or used coarse
resolution climate model simulations. Furthermore, by applying
two hydrological models, we demonstrate the importance of
proper physical model configurations to correctly assess the lag
time correlation for compounding high coastal water level and
high discharge events. Using a methodology developed by van
den Hurk et al. (2015), we force three impact models (one storm
surge model and two hydrological models) with output from
a large ensemble of a high-resolution regional climate model
(RCM) avoiding the necessity of proxies as applied in some
of the previous assessments. Further, this approach provides us
with a large dataset ensuring a solid statistical assessment of the
problem. The combination of these improvements, i.e., the use
of real impact variables rather than proxies, different regimes of
discharge models and a longer timeseries obtained from a high-
resolution climate model ensemble, improve our ability to draw
more consistent conclusions than possible in previous studies.

DATA AND METHODS

Study Area
The Rhine basin covers an area of 185,000 km2 and runs over
1320 km from its source in the Alps to the North Sea. The
streamflow in the Rhine is mainly dominated by snowmelt
and rainfall-runoff from the Alps during summer for the
upper part of Rhine (Viviroli et al., 2003). However, for lower
parts at Lobith, streamflow is mostly dominated by rainfall
resulting in streamflow peaks during winter. A peak-shift in
the average annual hydrograph is observed from summer to
winter from the upper Rhine at Basel (50 km downstream of
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FIGURE 1 | The Rhine basin, with seven sub catchments used for the

calibration in the study. The triangles (black) represents the outlet of sub-basin

used for the calibration. The two letter abbreviations are used to denote the

countries. The blue line represents the Rhine and the tributaries. The black

boundary represents the Netherlands outline.

Untersiggenthal as shown in Figure 1) and lower Rhine at Lobith
(Engel and Disse, 2001; Photiadou et al., 2011). The snowmelt
contribution to the streamflow at Lobith is significant and total
annual contribution to streamflow is around 30% (Stahl et al.,
2016). The area upstream of Basel produces almost 50% of the
discharge despite only covering around 20% of the total area of
the Rhine catchment (Kwadijk and Deursen, 1999). The flood
wave travel time from Basel to Lobith is around 5 days (Hegnauer
et al., 2014). Further, the slow melt from snow and glaciers would
require an additional day or two to reach Basel.

The storm surges along the Dutch coasts are driven by
meteorological conditions (Ridder et al., 2018a). In general,
the most extreme storm surges are associated with low
pressure systems in the North Eastern Atlantic area, depression
trajectories with a south-east direction, along the jet stream over
the North Sea results in the development of persistent strong
north-westerly winds and related surge conditions at the Dutch
coast (van den Hurk et al., 2015). These stormy conditions in
the North Sea area mainly develop during the winter season
from October to March. Every year on average two strong storm
events (winds higher than 19–20 m/s) are recorded at Hoek van

Holland (Smits et al., 2005). Further, these depression systems
are also characterized by humid Atlantic moisture conditions
and primarily transport the moisture toward the Netherlands
(Khanal et al., 2019).

Observations and Climate Model Data
We use data from a 16-member ensemble obtained with the
Global Climate Model (GCM) EC-Earth (Hazeleger et al., 2012),
created using a perturbed atmospheric initial-state approach
(start in 1850). Each of the ensemble member is a plausible
representation of possible climate states and differs from each
other in their initial atmospheric conditions and model internal
variability. The internal variability of the climate system is highly
non-linear, which causes significant variability between model
runs. Thus, each of the ensemble member represents how climate
can vary due to chaotic internal variability (Deser et al., 2012).

This study focuses on the period from 1951 to 2000. The
GCM ensemble is dynamically downscaled using the RCM
RACMO2 at 12-km resolution (van Meijgaard et al., 2008).
Daily precipitation output from RACMO2 is subsequently bias-
corrected using gridded E-OBS V14 data at a 0.25◦resolution
(Haylock et al., 2008). The downscaled temperatures are further
adjusted with a temperature lapse correction rate of −6.5◦C/km.
The dynamically downscaled and bias-corrected data serves as
input for two conceptually different hydrological models for
the Rhine basin (a) SPHY (Terink et al., 2015) (b) HBV-96
(Bergström, 1976) and a storm surge model; WAQUA/DCSMv5
(Gerritsen et al., 2013). The performance of the hydrological
models is tested against observed mean daily Rhine river
discharge at Lobith, where the Rhine enters the Netherlands and
daily mean total water levels (the sum of the tidal contribution
and the non-tidal residual including the meteorological effect
referred to as TWL i.e., total water level) at Hoek van Holland
(HvH) for the period 1951–2000 provided by Rijkswaterstaat and
are available online1. The overall modeling framework of this
study is presented in Figure 2.

Hydrological Modeling of Rhine River
Discharge Using SPHY and HBV-96
The application of two hydrological models allows the assessment
of model-uncertainty in simulating discharge waves in relation to
the natural variability due to e.g., dominant precipitation regions,
and the sensitivity of different routing methods. To this end, we
use different hydrological models to simulate the daily discharge
of the river Rhine at Lobith. From this point on the flow of the
river is highly regulated with the main part of the river discharge
being directed to the coastal outlet at HvH. Since snowmelt runoff
plays a significant role in defining the hydrological regime and
annual cycle along the Rhine (Stahl et al., 2016), we use models
that explicitly account for this process.

The Spatial Processes in HYdrology model (SPHY) is
a spatially distributed, physically based “leaky-bucket” type
model, which operates on a gridpoint basis. It integrates
parameterizations of the dominant hydrological processes: (i)
rainfall–runoff; (ii) lake/reservoir outflow, (iii) cryospheric

1www.rijkswaterstaat.nl/
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the intermediate steps followed like bias correction of precipitation and lapse rate correction of temperature obtained from downscaling EC-Earth.

processes (snow, ice, glaciers), (iv) dynamic vegetation, (v)
evapotranspiration, and (vi) root-zone moisture content. It
contains sub-grid variability (e.g., cells can be glacier-free or
partially to fully covered with glaciers) and is based on the widely-
used degree-day melt modeling approach (Hock, 2003). SPHY
requires daily precipitation, and daily maximum, minimum
and average temperature as forcing input. SPHY was calibrated
against observed time-series of daily discharge (Obs), obtained
from the Global Runoff Data Centre2, at seven locations along
the Rhine for the period of 1989–2000. The calibration was
performed sequentially; initially for five independent upstream
(U/S) locations and subsequently for the two downstream (D/S)
locations Andernach and Lobith. We used the mean square
error (MSE) as the objective function and maximum likelihood
estimation (MLE) criteria to calibrate the model parameters.
SPHY uses a simple flow recession coefficient (kx) to simulate the
delay between generation of specific runoff within the catchment
and reaching the outlet. The recession coefficient is used as a
weighting parameter to calculate the routed flow at each pixel,
which in SPHY is calculated as weighted average inflow of the
current and previous day (Terink et al., 2015). The averaging used
in SPHY causes the attenuation and delay of the floodwaves in
the model. A simple accumulation of the fluxes over the drainage

2http://grdc.bafg.de/

network is used to calculate the flow. This method is typically
suitable when aggregation time period (month, year) is larger
than the travel times of water along the longest river length. To
simulate the realistic flood wave propagation, we use the stand-
alone version of PCR-GLOBWB2 kinematic wave routing scheme
(here after referred to as routing model). SPHY is coupled one-
way to the routing model as the outputs from SPHY serve as
input for the routing model. More detail about routing model
can be found in Sutanudjaja et al. (2018). The routing model is
calibrated for Manning’s n for the same time period as SPHY.
The daily flux in mm/day generated by SPHY model is routed
with the calibrated routing model to get the discharge. From now
onward the discharge or floods from SPHY mentioned in this
study will refer to the routed discharge after the use of routing
model. Calibration and performance of the upstream sub basins
are provided in the Supplementary Material (Supplementary

Figures S1–S3). The extreme flooding events of 1993/1994 and
1995, dominated by precipitation and snowmelt, respectively
(Engel, 1997), are included in the calibration period.

The second hydrological model is HBV-96 (hereafter referred
to as HBV) originally developed by Swedish Meteorological and
Hydrological Institute (SMHI, Bergström, 1976) and updated
to version used here by Lindström et al. (1997). HBV is
a “semi-distributed” conceptual model and, similar to SPHY,
also includes parameterizations for processes such as snow
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accumulation and melt, evapotranspiration, soil moisture and
runoff. Unlike SPHY, HBV contains a detailed routing procedure
to model flow between sub-basins and through lakes. In this
study, we use the version of HBV calibrated by Deltares
(Kramer et al., 2008). The final discharge series at Lobith for
both the calibration run and the 16-member ensemble were
provided by Deltares.

Storm Surge Modeling of the North Sea
Using WAQUA/DCSMv5
The storm-surge model used in this study is WAQUA/DCSMv5
(hereafter referred to as WAQUA). WAQUA solves the two-
dimensional shallow water equations on a (1/8)◦× (1/12)◦ grid
to simulate water levels for the North Sea and its coastal
areas. For this, the model takes into account the astronomical
tide, the wind-induced movement of water and the barometric
effect (Olbert and Hartnett, 2010) associated with the locally
prevailing sea level pressure. Therefore, when a low-pressure
system travels over the North Sea, WAQUA responds to the
main meteorological forcing components that affect shallow seas
during such an event. Tidal effects, modified in amplitude and
timing by geometry of the coast and the underlying bathymetry,
are calculated separately to this meteorological forcing. To
obtain the TWL, WAQUA is first run using only the harmonic
components at the domain boundaries, while the meteorological
forcing is neglected. In a second step, WAQUA uses the
calculated tidal level from the previous step and applies the
meteorological forcing to calculate TWL. The non-tidal residual
(hereafter referred to as surge) is then derived by subtracting the
tidal level from the TWL.

A detailed description of how surge and tides are computed
in WAQUA can be found in Gerritsen et al. (2013). The model
sensitivity and capability to represent relevant air-sea momentum
transfer processes and annual extreme water levels is described in
Ridder et al., 2018b. For the study presented here, the daily mean
TWL (tide plus surge) at HvH is used.

PERFORMANCE OF THE SURGE AND
DISCHARGE MODELS

It is important to assess the basic quality of the surge
and discharge models. For a validation of the storm surge
model WAQUA the reader is referred to previous studies that
present this assessment in detail (van Meijgaard et al., 2008;
Ridder et al., 2018b). Since the aim of this study is the exploration
of relations between river discharge at Lobith and coastal water
level at HvH, the amplitude, timing and duration of (extreme)
discharge events are particularly critical.

Hydrological Models (SPHY and HBV)
To assess the performance of the two hydrological models, both
HBV and SPHY (together with routing model) were forced
with bias-corrected E-OBS daily precipitation and temperature
data for the period 1951–2000. The output of both models thus
produced (hereafter referred to as EOBS runs) is compared
to the observed discharge at Lobith. The assessment focuses

on the ability of the models to reproduce discharge amounts,
duration of the flood wave (see section “Flood Wave Duration
Distribution”) and timing of flood peaks (see section “Timing of
Onset and Peak”). For this we use a simplified threshold approach
to identify the flood waves in the discharge time series. In this
study, a flood wave event is defined as a series of consecutive
days with daily discharge exceeding the 95th quantile of the
annual distribution. The length of each flood wave (in days)
is calculated as the time difference between the onset (flow
exceeds threshold) and offset (flow falls below threshold). The
95th quantiles are computed independently for the observations
and the models based on the respective full-time series to account
for model biases.

Basic Metrics and Distribution

Figure 3 shows the daily Rhine river discharge for the
entire period 1951–2000 as modeled by HBV and SPHY
compared to observations. HBV tends to slightly overestimate
observed high peaks (flow greater than 95th quantile) by
up to 420 m3s−1 on average (> 3500 m3s−1 in some
cases). Similarly, SPHY overestimates the discharge by up to
390 m3s−1 on average (>8000 m3s−1 in some cases). Modeled
discharge in SPHY exceeds 16,600 m3s−1 as compared to the
observed discharge around 11,885 m3s−1, making it unsuitable
as a forecast model for the Rhine river’s discharge extremes
without additional statistical post-processing (such as quantile
correction). Nevertheless, both models show the ability to
represent observed discharge values fairly well with an overall
bias and Nash Sutcliffe Efficiency (NSE, Nash and Sutcliffe (1970)
see supplementary SE1 for the equation) of 0.3% and 0.69 for
SPHY, and −10.3% and 0.87 for HBV (Table 1). HBV thus
outperforms SPHY at all metrics except bias.

The normal quantile-quantile plot using observed and
modeled discharge (Figure 4) shows that both HBV and SPHY
overestimate the observed flow at low discharge values. At
intermediate values (ranging from ±1.5 standard deviation of
mean discharge) SPHY reproduces observations fairly well, while
HBV clearly outperforms SPHY for values above 2 standard
deviations. At the highest discharge extremes, observations lie
below the discharges of HBV and SPHY with HBV following
observations more closely.

Flood Wave Duration Distribution

Using the definition of a flood wave event described in section
“Hydrological Models (SPHY and HBV)”, i.e., flows higher than
the 95th quantile of the respective dataset, we find 92 (SPHY),
113 (HBV) and 116 (observations) flood waves in the 50 years
between 1951 and 2000, just under two per year on average. Most
of these events have occurred in the winter half year (October
to March). Their duration ranges from one to up to 35 (in
HBV), 40 (in Obs), and 50 (in SPHY) days (Figure 5A). As a
result, HBV reproduces the observed mean flood wave length of
approximately eight days fairly well while SPHY overestimates
the mean duration. Note that the calculation of the mean
flood wave length is based on the number of flood waves in
the respective dataset. Therefore, in SPHY fewer occasions of
overestimated flood durations affect the mean of the flood wave
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FIGURE 3 | Observed versus modeled daily discharge at Lobith (A) HBV and (B) SPHY for the period between 1951 and 2000. Colors indicate three ranges based

on observed quantiles: “Low” (<5%, red), “Medium” (5–95%, green), and “High” (>95%). The solid red line represents the 1:1 slope.

TABLE 1 | Performance index for HBV and SPHY model on a daily time scale.

HBV SPHY

Objective function Low Med High All Low Med High All

R2 0.52 0.87 0.65 0.91 0.19 0.65 0.44 0.77

PBIAS (%) −18.3 −10.6 −7.3 −10.3 −20 −0.1 6.7 0.3

RMSE(m3s−1) 180 359 1045 415 300 605 1732 695

NSE −4.9 0.79 0.26 0.87 −5.26 0.59 0.2 0.69

Volumetric Efficiency 0.82 0.87 0.85 0.87 0.72 0.81 0.79 0.81

Flood wave timing (days) – – −0.76 – – – −0.18 –

The low, med, and high represent the statistics for Q < Q(5th), Q(5th) < Q < Q(95th), and Q > Q(95th) quantile of the observed flow whereas, all, represents the

overall flow series.

length more strongly than in HBV where a higher total number
of flood waves can mask the effect of prolonged flood waves. This
can be seen in the empirical cumulative distributions (ECDFs) of
the flood duration for the hydrological models and observation
(Figure 5B). The ECDFs of the two models show that half of
the events (ranging from a probability of 0.25–0.75) last between
4–9 days in HBV and 2–9 days in SPHY (Figure 5B). Hence,
there is no consistent overestimation of flood wave duration in
SPHY but the overestimation of the mean is highly biased by a
few long flood waves.

Adding the ECDFs of the different RACMO2 ensemble
members (light blue and red lines) highlights the range of
uncertainties in flood wave length. A comparison between
ensemble members and observations is of course not possible.
However, adding them alongside the ECDFs of the two
EOBS runs (blue and red solid lines) gives an indication
of the influence of random internal variations (see section

“Observations and Climate Model Data”) and highlights that
the results of both models fall within the physically plausible
flood wave durations.

Timing of Onset and Peak

In compound events, two or more variables reach high quantiles
of their distribution simultaneously, or in rapid succession.
Therefore, the ability of hydrological models to reproduce
the timing of events in impact-parameter space (TWLs and
discharge) is crucial. However, neither SPHY nor HBV are
able to reproduce all observed flood peaks. Out of the 200
highest maximum discharge dates in the observations, 141
are realized in HBV, but only 115 in SPHY. A better match
is reached if we allow for some flexibility in the timing,
accounting for random errors in the meteorological forcing
or runoff generation process. The modeled arrival time of
the peak of a flood wave is sensitive to many parameters,
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FIGURE 4 | Normal quantile plot for HBV (blue), SPHY (red) and Observation

(black). On the horizontal axis, the distributions are centered and scaled

(divided by the standard deviation). The light blue and red lines represent 16

ensemble members for HBV and SPHY.

including intensity, duration and frequency of precipitation,
soil moisture, the existence of basal flow (e.g., due to snow/ice
melt upstream), river bathymetry and topography. Modeling
and representation errors in each of these processes can explain
part of the large difference in observed and modeled peak-
flow days.

Here, we use the exact matching of the peak timing of the flood
waves in observations and the models. The dates corresponding

to local maxima within the onset and offset of the flood waves
in the impact models are then compared with the observed peak
dates allowing for a difference of ± 5 days to match. Since
taking longer than ±5 days might result in matching the flood
peaks entirely from different events, we chose to use ±5 days
here. From 116 floodwaves in total, the peaks that lie outside (2
in HBV and 8 in SPHY) of the ±5 days range, are discarded.
Figure 6 shows the distribution of arrival-time differences in peak
timings of flood. Both models mostly have a negative time lag
(implying that most peaks arrive earlier than in the observations)
but in HBV the negative time lag (about 1 day) is larger than
the value in SPHY (almost zero). This suggest that both the
models have errors in estimating the timings of flood waves
and HBV being the worst of two. Half of the data points lie
between −1 and 1 for HBV and SPHY. The presence of positive
values in the distribution indicate the models waves sometimes
occur too late. The broad shape of the distribution of both HBV
and SPHY reflects the complex interaction of the climatic and
hydrologic processes. This wide distribution is a result of multiple
drivers of flood rather than a single flood generation mechanism.
The climatic mechanism includes persistent synoptic weather
conditions favoring a very extreme event or episodes of moderate
precipitation events resulting in a multiple day extreme event or
extreme positive temperature anomaly causing a quick melt of
snow in the catchment (Prudhomme and Genevier, 2011; Gaál
et al., 2012; Nied et al., 2014). The hydrological processes such
as antecedent soil moisture conditions, snow and ice storage in
the catchment, rain on snowmechanisms, and antecedent ground
water level play an important role in defining the magnitude and
length of the flood wave (Merz and Blöschl, 2003, 2008). Further,
the superposition of flood waves from different tributaries of
the river also contributes toward the increased length and
magnitude of the flood wave. Moreover, coincidence of any of the

FIGURE 5 | (A) Frequency plot for the flood wave length above 95th quantile threshold of discharge. The dash vertical lines show the mean of the flood waves for

SPHY (red), HBV (black) and HBV (blue). (B) The Empirical cumulative distribution function (ECDF) plot for the floodwave length above 95th quantile threshold of

individual time series discharge. The light red and the blue shaded area represents the 0.25 and 0.75 for SPHY and HBV, respectively.
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FIGURE 6 | The frequency plot for the peak of the floodwave models

compared with the observation. The X axis represent the lag in the peak of the

wave as compared to the observed peak. The negative and positive value

represents the peak of the modeled waves are earlier and later than the peak

of observed floodwaves. The dash line (blue and red) represent the weighted

mean of the distribution (HBV and SPHY).

extremes from the climatic and hydrological processes results in
amplification of the flooding magnitude and extent.

In summary, SPHY overestimates the peaks, while the flood
waves in HBV reach the outlet earlier than observed flood waves.
Both models have difficulties in reproducing the exact flood
timing, and HBV generates flood waves that occur systematically
too early. However, the distribution of timing errors is quite
broad which makes correcting for this error difficult.

DEPENDENCIES BETWEEN STORM
SURGE AND RIVER DISCHARGE

In this section, we assess the dependence between Rhine river
discharge at Lobith (modeled by SPHY and HBV) and TWL
at HvH (modeled by WAQUA). Since most storm driven high
water levels and discharge events occur in winter, we focus our
analysis on the winter half year only (October–March). Here
we repeat the earlier analyses of Geerse (2013) and Klerk et al.
(2015), but account for a range of both positive (discharge
event succeeded by TWL event) and negative (discharge event
preceded by the TWL event) time lags in our assessment.
A positive lag can account for the time required for the weather
system to move inland including hydrological responses of the
catchment. A negative lag may result from an unusual track of
the passing weather system, or from natural variability where
the events are shaped by a sequence of storms. The use of
a range of time lags allows also to account for the inherent

model uncertainty in reproducing the correct wave travel speed
(Figure 6). To analyze the influence of the choice of time lag
on the dependence structure of high discharges and high TWL,
we base our assessment on extreme values in TWL. We use
daily mean TWL instead of the maximum TWL to eliminate
any possibilities of extreme sea levels driven by the astronomical
tide. By using the daily mean TWL the effect of astronomical
tide on total water level is neglected focusing our analysis on
the meteorological driver only. Thus, we define a high/extreme
water level event as a day where the daily mean TWL at HvH
exceeds the 90th quantile of its distribution. Figure 7 shows this
composite for the RACMO based ensemble of WAQUA-HBV
andWAQUA-SPHY. In absence of any correlation between TWL
and Rhine discharge, the 90%-confidence bands of the percentiles
of the lagged time series around a high-water event (shaded area)
would overlap with the unconditional discharge percentiles. This
is not the case. Depending on the hydrological model, and more
importantly, depending on the discharge quantile considered, the
composite shows elevated discharge levels for a range of lags. For
the 90th quantile the discharge levels are significantly elevated
at lags ranging from −2 days to >10 days. This indicates that
there is dependence between the two variables starting 2 days
before a high water (90th quantile) event and lasting up to 10 days
after the event. The elevated conditional discharge 2 days before
a high TWL event possibly due to the twin or series of storm
surge where the water level is already elevated by the first storm
event. These ranges of lag are consistent with the time (i) the
low-pressure system causing the conditions in both variables
requires to move over the catchment area, affecting the fetch
for surge and precipitation starting locally and moving further
upstream, and (ii) the transformation of rainfall to runoff and the
propagation of the runoff waves to the downstream location of
Lobith, and (iii) natural variability in the dependence of discharge
and TWL. The relationship between the discharge and TWL is
not linear as the conditional discharge starts to rise with the
positive lag and attains a maximum value around positive lag
of 6 days (Figure 6). The dependence ceases afterward with
increase in the positive lag days ultimately leveling off with the
climatology. Both HBV and SPHY show significantly elevated
discharges at the 99th quantile for a lag of four to 8 days. The
90th, 95th, and 99th quantiles show a clear deviation from the
climatology in both models.

Dependence in the Tail of the
Distributions
In this section, we examine how the upper tails of these two
distributions are related. As mentioned in the introduction, tail
dependence has been shown to be of particular importance
for the influence of compound events on flood risk. Since tail
dependence describes the degree of dependence in the tails of a
multivariate distribution, we investigate the tail of the discharge
distribution conditioned on the distribution of total water level
and compare it with the unconditional tail of the discharge
distribution. The result of this analysis determines whether or not
there is any underlying correlation in the tails of the discharge
and TWL distributions. The availability of 800 years of data
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FIGURE 7 | Mean temporal evolution of the 90th (red), 95th (green) and 99th (blue) quantile of discharge at Lobith for total water level events exceeding the 90th

quantile at HvH in WAQUA as modeled by HBV (A) and SPHY (B). The lag in discharge at Lobith is relative to the peak in total sea water level at HvH. Negative and

positive lag days indicate that the discharge peak occurs before and after the day of the high sea water event. The dashed lines are the unconditional discharge

quantiles, i.e. discharge quantiles independent of water level; solid lines are the ensemble mean of the conditional quantiles. The shaded area represents 16 different

lines for each ensemble and we only took the 5th and 95th quantile of those 16 lines to show spread of 16 ensemble members.

provides us with sufficient confidence in analyzing the extremes
in the tail of the distributions.

Having determined the correlation for a range of time
lags in discharge and TWL (Figure 7), we now examine the
dependence in the tail of the distribution for a lag of 3 days,
i.e., with a water level event at HvH occurring 3 days before
the discharge peak at Lobith. This is a shorter time lag than
applied by Klerk et al. (2015), who presented the dependence
in the tail for a lag of 6 days. Despite this shorter time lag
we find a similar relation between the two variables as Klerk
et al. (2015) (Figures 8A,C). For this, we test the 50th and
90th quantile of the discharge distribution conditional on TWL
and compare it to the respective unconditional discharge. We
use seven different quantile of the full water level distribution
to determine the conditional discharge (50, 60, 70, 80, 90,
95, and 99). The conditional discharge values lie above the
unconditional discharge. This suggests that the two variables
show some correlation in the tail of their distribution even at
a lag shorter than the 6 days. The background scatter points
only serve as an illustration of the joint distribution of the two
variables. Presence of red scatter points on the top right corner
implies that two variables are dependent. However, discharge
and TWL do not show any strong dependence, especially for
very large values.

Since the dependency in tail of these two-distribution is
already realized at a lag of 3 days, we also assess if the
correlation still holds for other choices of lag duration. For
this, we investigate the discharge distribution conditioned on
specific (50th and 90th) quantiles of TWL. We find that, due to
the longevity of floodwaves and the natural variability within
the system, this tail dependency can be shown to hold for a
range of lags. To illustrate this, we chose the 50th and 90th

quantile of TWL and again determined the part of the discharge
distribution between 50th and 90th quantiles, i.e., the high tail

of the conditional discharge distribution. Figures 8B,D show
the discharge conditioned on the 50th and 90th quantile value
of TWL as function of time lags varying from −15 to 15 days.
Two important aspects can be seen in this figure: (1) the width
of the band increases with time lag, and (2) the timescales at
which the band approaches the climatology, i.e., none of the
ensemble members shows a correlation between discharge and
TWL. The band width (brown and green area) represents the
conditional discharge distribution (part of distribution between
the 50th and 90th quantiles) for the respective TWL quantile.
The increasing band width suggests a large variation in the
distribution (between 50th and 90th quantiles) and vice versa.
The band width is decreasing with increasingly negative lag days
and approaches its climatological value quickly. This implies that
discharge and TWL before a high coastal water level event are
uncorrelated and their connection is not different than during
normal climatological conditions. For positive lags the band
width increases with increasing number of lag days and attains
a maximum deviation from climatology around 4–8 days. This
variability in bandwidth could be explained by the connection
between TWL and river discharge for positive lags and indicates
that both variables have the same origin, i.e., winter storms
building high surge levels at the coast and dropping large
amounts of precipitation to the catchment resulting in high river
discharge levels after few days. The 90% confidence interval
within the ensemble (i.e., 5th and 95th quantiles) in bandwidth
and are calculated from the ensemble. The ensemble confidence
is larger in estimating the bandwidth for 90th quantile (brown
band) than the 50th quantile (green band). Like bandwidth,
ensemble spread (bars) increases for 4–8 days positive lag, but
are still higher than climatology. Conversely, at negative lags the
uncertainties overlap with climatological values. The uncertainty
bands are higher than climatology only after positive lag of 2 days
for both HBV and SPHY.
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FIGURE 8 | Scatter plot of coastal water levels and discharge for a lag of 3 days (A) HBV and (C) SPHY) and 16 ensemble members. Events exceeding the 99th

quantile of either of the variables are marked in blue. Events exceeding the 99th quantile of both variables are marked in red. The triangles (green/brown) represent

the ensemble mean of the conditional discharge (50th and 90th). The green solid lines represent the spread of ensemble i.e., 5th and 95th quantiles of the conditional

discharge (50th quantile). Similarly, the brown solid lines represent the 5th and 95th quantiles of the conditional discharge (90th quantile). Conditional discharge plot

for 50th and 95th quantile of surge [(B) HBV and (D) SPHY]. The green band, represents the conditional discharge distribution i.e., the discharge distribution between

the 50th and 90th quantile only for the cases where the total water level is above 50th quantile. Similarly, the brown band represents the conditional discharge

distribution i.e., the discharge distribution between the 50th and 90th quantile only for the cases where the total water level is above 90th quantile. The upper and

lower green triangle represent the mean of the 50th and 90th quantile of discharge conditioned on 50th quantile of TWL. Similarly, the upper and lower brown triangle

represent the mean of the 50th and 90th quantile of discharge conditioned on 90th quantile of TWL. The vertical yellow dash line indicates the time lag zero. The error

bar on triangle represent the confidence interval estimates of the mean (5th and 95th quantiles) from 16 ensemble members.

Other than for negative lags, the bandwidth for large positive
values does not reach the climatological values. This is mainly
imposed due to the slow hydrological response of the catchment
and large duration of the river floods. This means that local
precipitation at the discharge location occurs within hours, while

the precipitation over the upper regions of the catchment takes
several days to be transformed into river discharge and travel
downstream. Furthermore, a second low pressure system closely
following the previous system can cause the initial increase in
river flow by precipitating in the same local downstream region
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FIGURE 9 | Joint probability density for total water level at HvH and discharge at Lobith (3-day lagged) for winter 6 months period (A) HBV and (B) SPHY). The

contours show different quantiles of the joint distribution (50th, 70th, 90th, 95th, and 99th). Shading is used to contrast density estimates from direct model output

and randomized (shuffled) data, where correlations have been artificially removed. Red/blue shading indicates regions where model data is more/less populated than

the shuffled data. The thin dashed lines show the 99th quantiles of each variable in the respective dataset. The colored points correspond to the highest TWL (1),

discharge (+) and compound events (o) for individual ensemble members.

and later accumulating with the upstream precipitation from the
previous system.

Joint Distribution
In order to discard the possibility that the joint occurrence of
high discharge and water level (red dots in Figures 8A,C) are just
based on coincidence, we follow the method applied in Kew et al.
(2013) and van den Hurk et al. (2015). For this, the probability
density function (PDF) of the full, physically related ensemble is
compared to a “randomized version” where the statistical relation
between the two variables is removed by combining random pairs
of variables (Figure 9). Results are shown for a 3-day lag, but
similar results are found for all lags where tail-dependence was
shown (see section “Dependence in the Tail of the Distributions”).

The shuffled dataset is derived from the original data in the
following way. First, the 16 discharge ensemble members were
shuffled (changing the order of ensemble randomly). Then this
new data is paired with the TWL data from all other ensemble
members. In this way fifteen shuffled sets of 800 years (16
ensembles × 50 years) of paired data were created. The reference
data set, in which the physical between the two variables is
retained, links TWL to the discharge 3 days later. Maximum
discharge from the reference and shuffled data sets are shown in
Figure 9. Each ensemblemember is shown using a different color.
Both hydrological models show similar joint distribution patterns
for the reference dataset. However, SPHY reaches further into the
high discharge area of the distribution than HBV. This is to be
expected due to overestimation of high discharge events by SPHY
(see section “Basic Metrics and Distribution”).

The area of interest for the assessment of the connection
between coastal water level and discharge is the area between
quantile contours of the reference and randomized joint

probability distributions. Consistently probabilities of joint
occurrence of high TWL and discharge levels are found in the
reference data set exceed randomized joint probability density
in the diagonal top direction, which indicates an increasing
dependence with increasing return period. Conversely,
combinations of high TWL/low discharge and vice versa are
less likely than randomized joint probability density (diagonal
perpendicular to the previous diagonal). This elongated shape
of the joint distribution of the reference data along the diagonal
indicates a positive correlation between the TWL and discharge
volumes 3 days later. The same diagram for other lag days
shows similar features suggesting that this correlation is not
limited to one fixed choice of lag but exists over a range of time
scales. The main differences between the different distributions
depending on lag day is that the correlation is stronger for
lag days around 6 days with the regions only covered by the
reference distribution being bigger than for shorter time lags
(Supplementary Figure S4).

Compound Probabilities
Up to now we have shown several aspects of the relation
between lagged extremes in TWL and Rhine river discharge
at Lobith. In this final section we compare the probability
of Rhine discharge exceeding a certain level, given that TWL
at HvH is also high. The unconditional probabilities here are
referred to as “random chance” as these are not dependent on
any pre-requisite threshold of TWL. The metric of interest is
the conditional probability scaled with its random chance. For
example, if TWL and discharge were completely uncorrelated,
we expect a random probability x × y that TWL >xth quantile
and discharge >yth quantile of their respective distributions.
We calculate the random chance for different quantiles purely
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FIGURE 10 | Probability for getting river discharge above a certain quantile (A) HBV and (B) SPHY, given that total water levels also exceed the 97.5th quantile. For

each discharge quantile, the probability is scaled by the random probability of the event.

from the reference winter discharge distribution. The conditional
discharge probability only for TWL higher than 97.5th quantile
is then calculated for same quantiles again for winter discharge
distribution. By scaling the conditional probabilities by the
random chance, the inflation factor due to the tail-dependence
is quantified. Figure 10 shows these scaled probabilities for
TWL >97.5th quantile of the winter distribution, and a range of
discharge exceedance probabilities. Results are shown for various
time lags. A value till one implies scaled probabilities do not
exceed the random chance probability. These values near unity
are found at all lags for the lowest discharge percentiles. However,
for increasingly rare conditions (higher discharge percentiles),
the scaled probabilities strongly increase. For HBV up to 2–5
times higher values are found for the higher discharge percentiles,
for a broad range of time lags. This implies that it is 2–5 times
more likely to get a high discharge once TWL is high. SPHY
shows qualitatively the same result. Although its peaks reach
lower values, the levels remain elevated for longer positive lags
than in HBV. This is clearly related the generally longer duration
of the floodwaves in SPHY.

DISCUSSION

Using the dynamically downscaled output of the EC-Earth
ensemble, we obtain coastal water levels and associated
river discharge from one state-of-the-art storm surge model
(WAQUA/DCSMv5) and two hydrological river-discharge
models (SPHY with routing model and HBV). The use of a
physically related 16-member ensemble provides us with a larger
sample size (800 years), allowing a solid statistical assessment of

physical relationship that cannot be carried out with observations
alone, as applied in previous studies. The increased sample size is
particularly important for the assessment of the high tails of the
tail of two distributions and their joint distribution.

This study is limited by the performance of the appliedmodels.
The results presented here carry the bias of the meteorological
and hydrological models. For instance, both hydrological models
show discrepancies to observed high discharges. Both HBV and
SPHY overestimates the discharge at high values. These large
biases mainly emerge in the peak discharge events, characterized
as multi-day events occurring roughly twice every year. The
same is valid for the storm surge model WAQUA, which has
been shown to reproduce observed coastal water levels and their
extremes fairly well (Ridder et al., 2018b). Since the results
presented here are based on quantile thresholds relative to the
respective dataset, the biases in the model results do impact the
findings concerning the statistical relation between the variables
water level and river discharge. The results of two hydrological
models with different bias allows evaluation of the impact
of these bias on the correlation characteristics, and gives an
indication of the contribution of model bias to uncertainty of this
joint correlation.

The presented results are based on daily values, both in
the analysis of the relevant variables as well as in the forcing
of the hydrological models. Consequently, the data does not
contain any diurnal variations in river discharge and surge/TWL.
Averaging to daily values leads to smoothening of the response
and to additional uncertainty in the timing of the peak onset
and duration. Moreover, the effect of two or more consecutive
precipitation events within a couple of days (analogous to two or
more small depression passing over in quick succession) could
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be considered as one. This would result in underestimation
of extreme events frequency, particularly in hydrological sense.
Since with the current threshold approach to identify the flood
wave, differentiation between the flood wave generated separately
from multiple precipitation event in quick succession is not
possible. More importantly, two storms in quick succession
(“twin storms”) where the second storm coincides with delayed
high runoff could not be resolved completely and considered
as one in the present setup. Although, the elevated conditional
discharge 2 days before a high TWL event, to some extent, is
explained by “twin storms” still it is not completely understood in
this study.While it is unlikely that this has a significant impact on
the probabilities of occurrence of compounding events it should
be highlighted as it may lead to a (small) underestimation of the
number of these events.

The impact models, especially HBV, are unable to resolve
the exact timing of the observed floodwaves. SPHY tends to
overestimate the flood peaks making it unsuitable to use for
the forecasting purposes unless additional post processing is
considered. To avoid a large mismatch of timing of floods peaks,
we chose to define the peak as the local maxima between the onset
and offset of the floodwaves. We found that both hydrological
models are unable to simulate the correct timing of the flood
peaks, but flood durations are well represented in both models.

The uncertainty due to downscaling from RACMO may
introduce spurious biases in the results presented here. RACMO
is known to release precipitation too close to the coastline (van
Meijgaard et al., 2012) which makes it difficult to estimate
the basin scale hydrological responses of the synoptic scale
circulation pattern. This may lead to an overestimation of the
local flood magnitude near coastal areas. Additionally, the most
extreme wind speeds can only be generated at scales that are
finer than those resolved by RACMO. Consequently, themodeled
TWL may display a bias as well. The statistical bias correction
methods do not always accurately preserve the properties of
extremes and associated signals (Christensen et al., 2008; Ehret
et al., 2012; Sippel et al., 2016). The possible alteration in extreme
precipitation signals, due to bias correction of downscaled EC-
Earth ensemble, may affect the results presented here.

Copula models, though rely on many assumptions, are very
useful and powerful tools in simulating the dependence of
variables in amultivariate environment. However, these statistical
models rely on many assumptions to simulate the joint behavior
or distribution. The joint distribution of the variables is difficult
to estimate beforehand and a physical modeling framework
that represents the physical correlations directly is needed. Our
approach is focused on addressing the correlation using a physical
model setup to generate the long time series. This indeed
introduces model error. On the other hand, fitting distributions
through the sparse number of observations lead to a large error,
in particular for the tails of the distributions, i.e., the very
extremes, which we are particularly interested in for this study.
To this end, we adopt a methodology that directly assesses the
compound nature of coastal water level and discharge, rather
than indirect proxies. By using multiple hydrological models and
fine resolution gridded climate data in ensemble mode, we ensure
that the heterogenous variation of meteo-hydrological processes

and the memory components of the system are well captured
in this study while they were missing in earlier studies for the
Rhine. We used a complete physical approach to investigate the
joint occurrence of high discharge and water level to show that
the correlations are not just by a chance. We conceptually show
that a strong storm whose winds set up a storm surge will need
time to reach the Rhine headwaters where heavy rainfall will find
its way to the river mouth after multiple days of travel time.
However, in reality this simple rationale is blurred by natural
variability where multiple storms and anomalous travel times
may lead to very different correlation lag times. Our ensemble
high-resolution model set-up allows diagnosing this correlation
rangemuch better than studies that rely on observational records.
Fitting distributions through the sparse number of observations
leads to a large error, in particular for the tails of the distributions,
i.e., the very extremes, which we are particularly interested in
for this study. We believe a multivariate statistical fit on the
model output data set will give more robust results but pretty
similar to the current findings Nonetheless, we show that the
compound events, consisting of high discharges and high TWLs,
are physically related to each other. This is an important finding
to improve assessments of coastal flood risks.

CONCLUSION AND RECOMMENDATION

The temporal dependence structure of compounding extreme
coastal water level and river discharge events has been analyzed.
Taking into account model uncertainty, natural variability and
duration of flood peaks, we find that correlation between the
discharge at Lobith and coastal water levels at Hoek van Holland
occur at a range of time lags. Other than previous studies, which
are based on historical observations, we find model uncertainties
make it necessary to consider a range of lag days rather than a
fixed time lag of 6 days. Thus, considering these uncertainties,
the impact of co-occurring high river discharges and coastal surge
levels cannot be neglected for large catchment areas as the Rhine
basin, as was suggested in earlier studies. Our results show that
even shorter time lags show significantly increased probabilities
of joint occurrence. Neglecting these short time lags can lead
to significant underestimations in return periods and thus flood
risk. Finally, this study illustrates the importance of good physical
models in compounding event analysis framework to allow for
solid and reliable assessments of the events.

It is possible that the temporal dependence structure will be
significantly altered when different subcomponents of discharge
such as rain, snow melt and baseflow are considered separately.
While we did not assess this in the present study, we believe it
to be a valuable assessment and plan to follow up this line of
investigation in a future study.

DATA AVAILABILITY

The code of the SPHY model is publicly available at
https://github.com/FutureWater/SPHY. The PCR-GLOBWB2
source code is publicly available at https://github.com/UU-
Hydro/PCR-GLOBWB_model. The WAQUA model codes are
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