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Summary

For the Segura River Basin, a prototype of a drought Decision Support Systems (dDSS) was developed
and evaluated. A preliminary design based on the user-requirements is presented of the drought
Decision Support System (dDSS). Then an in-depth evaluation of the system performance is presented
and a discussion on how the users evaluated the system based on an pilot that was done during three
months.

The dDSS of the Segura case study (SE-Spain) targets the River Basin Authority and forecasts several
hydrological drought indicators for the Segura river basin, and the connected upper Tagus basin. The
dynamic climate model-based seasonal forecasting system was developed and tested comparing it with
the currently used forecasting model (a simple statistical approach). The Segura system was tested
during winter 2018/2019 in an operational setting.

The developed system has been compared to the already established planning and management
operations applied by the river basin authority. The analysis undertaken in this report show that
improvements when using dynamic seasonal forecasts are feasible but and not yet impactful enough to
entice the user to change current practices. The latter is reinforced by two major factors: (1) current
practices are the result of decades of stakeholder processes and institutional settings, and (2) the
probabilistic output of seasonal forecasts shows large spread and therefore doesn’t convey a simple
decision-framework to the end user.

Still, for the first time the basin authority has come to get acquainted with the climate model-based
seasonal forecasts and although uncertain, they are now more aware of where the challenges are and
have shown to be very willing to further study how the techniques and tools can complement the existing
toolset and drought management procedures. They have also gained or increased trust in the partners
involved and the science behind. To further build on the awareness and trust that was generated within
IMPREX, follow-up work should target an even closer collaboration, for example by having researchers
working on-site within the premises of the user (e.g. by secondments), so the tools can be embedded
efficiently within the institutional and legislative setting.
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1

Infroduction

The Segura River Basin (SRB) is located in the south-eastern corner of the Iberian Peninsula, bordering
the Jucar basin, and has an extension of 20,234 km? (Figure 1-1). This semi-arid Mediterranean region
is characterized by a mean annual temperature of 18 °C and mean annual precipitation ranging between
300 mm in the downstream areas to 600 mm in the upstream area. Most of the rainfall occurs in a few
intensive events that take place in spring and autumn. The temperature conditions make the area
suitable for profitable agriculture (fruit trees, horticultural, etc.) despite having the lowest percentage of
renewable water resources of Spain and recurrent drought episodes.

"

WaterTransfer “
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Figure 1-1: Study case basin location indicating the water transfer. Red squares delimit upper Tagus and
upper Segura river basins. Grey square delimits the Segura river basin.

The impacts of these events are considerable: for example, the severe drought in 1994 led to an 11-19%
reduction of production and a 14% reduction of irrigated area compared to average (CHS, 2007).
Production losses due to the lack of irrigation water, in the last year of the extended drought period,
amounted to 120 million euros. This reflects the direct economic effects of long-lasting drought periods
in the region and therefore the importance of mitigative actions and drought early warning systems to
reduce such impacts.

The River Basin Authority of the Segura Basin (Confederacion Hidrografica del Segura — CHS) is
responsible for managing most of the water-related infrastructure and distribution of water resources in
the basin. During drought periods, CHS must take decisions on the use of alternative water resources
(emergency groundwater wells, costly desalination water) and water saving measures. Besides water
from the SRB itself, an external transfer provides water for domestic and irrigation in the basin, coming
from the Upper Tagus (central Spain): The Tajo-Segura Water Transfer (TSWT) (Figure 1-1) system.
The latter connects the Tagus basin in Central Spain to reservoirs in the Segura river basin through a
large, ~300 km long infrastructure.



The Drought Management Plan uses drought indices that are based on the resources stored in the
reservoirs in the Segura river basin and in the Upper Tagus, to trigger drought mitigation actions.
Currently these drought indices are based on observations (reservoir level) only (Table 1 shows drought
levels used for the Tajo-Segura transfer). During meetings with CHS it has become clear that so far, the
user did not have the resources to explore the potential of integrating forecasts in their decision-making.
Also, CHS showed to be quite skeptical about the skill of these type of systems in this basin, given the
extremely high inter-annual and intra-annual variability of rainfall and water resources in this basin.

For the connected Upper Tagus-basin however, forecasts are made of reservoir inflows based on a
statistical (linear regression) relationship with measured flows in the previous months to estimate flows
in the next three months. They use these forecasts to decide on the amount of water that can be
transferred to the Segura river basin (see Table 1). Meetings with the main irrigator’s association took
place in which they showed interest in having a more skillful forecasting method. Seasonal forecasts
based on dynamical modelling approaches have not been used so far in the Segura river basin. The
currently used statistical method is considered the benchmark for the Segura river basin. For both river
basins, a dynamic hydrological forecasting system was built. For the Upper Taguas, it was compared
with the currently used forecasting method (hereafter referred to as “user forecast”).

Table 1. Tajo-Segura Water Transfer exploitation rule.

Levels Decision rules* Max. transf. vol.
(hm3/month)

Level 1 — ordinary situation Vi> 1500 hm? or Qacc > 1000 hm? 68

Level 2 — abnormal situation Vi< 1500 hm?® and Qacc < 1000 hm3 38

Level 3 — abnormal situation | Vi < tabulated values per month that | 23

(Council of Ministers approval) | the limiting values

Level 4 — absence of surplus Vi< 240 hm? 0
* Vi = current storage volume; Qacc = three-month accumulated inflows




2 Prototype specifications

21 General approach

The dynamic forecasting system was developed in two steps: (1) calibrating a hydrological model with
historic data to generate a reference run, and (2) force the model with an ensemble of meteorological
hindcasts to analyse performance.

The hydrological component is simulated using the Spatial Processes in Hydrology model (SPHY)
(Terink et al., 2015) that runs at a resolution of 5x5 km for the Upper Tagus (UT) basin on a daily timestep.
For the reference run, precipitation and temperature values from the Spain02, v4.0 dataset (Herrera et
al., 2016) are used for the period of 1980-2010. This simulation creates a best estimate for the spatial
variability of hydrological variables which are then used to bias-adjust initial conditions for the hindcasts
model run.

The hindcasts consist of seasonal prediction for precipitation and temperature variables taken from the
ECMWF’s seasonal forecast SEAS5 (ECMWF_SEASS5 hereafter) at daily resolution. These inputs are
bias adjusted and downscaled first before being used as an input for the SPHY model. The hindcasts
consist of a 25-member ensemble covering the period from 1980 to 2010 and represent 3-month
simulations initialized for the month of January, April, July and October (start of the hydrological year). A
graphic summary of the methodology is provided in Figure 2-1.
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Figure 2-1: Modelling structure for the process-based forecasting system including the “real-world”
conditions used for verification. In each box, the flow from left to right represented by green hollow arrows
depict the creation of subsequent initial conditions whereas the single red arrow represents the
meteorological forcing. Figure adapted from (Greuell et al., 2018)
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Data

Historic meteorological data

The climate dataset called Spain02, v4.0 (Herrera et al., 2016) is a series of high-resolution daily
precipitation and (maximum and minimum) temperature gridded datasets developed for peninsular Spain
and the Balearic Islands. The dataset uses a dense network of ~2500 quality-controlled stations (~250
for temperatures) and provides information for the period 1971-2010 at a 0.112 (~11km) grid resolution.
The dataset is used to force the hydrological model in order to generate the reference simulation in
addition to deriving a best estimate for initial conditions used for hindcast simulation. Also, the dataset is
used for bias adjustment and downscaling of the hindcasts.

Seasonal forecasts

The ensemble meteorological hindcasts are obtained from the ECMWF SEASS5. Seasonal forecasts are
derived from process-based climate models combining ocean and atmosphere dynamics (Weisheimer
and Palmer, 2013). Global predictability within these coupled models is most importantly derived from
the adequate representation of large-scale phenomena’s such as El Nino-Southern Oscillation (ENSO).
For example, the latter can offer a predictive signal six months ahead in time in particular areas around
the globe (Doblas-Reyes et al., 2013; Jin et al., 2008). Of interest here are a set of hindcasts (re-
forecasts) used to run skill diagnosis (1980-2016). These are constituted of a 25-member ensemble
forecasts of key variables such as precipitation and temperature at a 36km grid resolution.

Bias adjustment and downscaling of the meteorological hindcasts

Systematic errors in climate models have made the usability of resultant data in hydrological impact
assessments challenging (Hagemann et al., 2011). A common methodology is to apply a statistical bias
adjustment method to reduce the propagation of errors into the hydrological modelling, herein,
influencing the meteorological input to resemble better observed measurements. The adjustment for
precipitation is made here with a gridded monthly correction factor, calculated by dividing the monthly
climatology of Spain02 with ECMWF-SEAS5 25 ensembles mean. For temperature, the forcing is
corrected by applying a lapse rate to the Digital Elevation Model. The data also underwent statistical
downscaling, another pre-processing feature in which both the ECMWF-SEAS5 and Spain02, v4.0
datasets were regridded to fit the resolution required for the basin level case study. The interpolation
rearranged the data from their initial grid point resolution to a 5 km grid resolution for The Upper Tagus
(UT) basin.

Hydrological modelling

The Spatial Processes in Hydrology (SPHY) model (Terink et al., 2015) is grid-based and often used for
high-mountain hydrology. For this application, the land component is most important (see Figure 2-2).
This is divided in two upper soil stores and a third groundwater store, with their corresponding drainage
components: surface runoff, lateral flow and base flow. SPHY simulates for each cell the soil water
balance, evapotranspiration, infiltration, and other fluxes. The cell-specific runoff, which becomes
available for routing, is the sum of surface runoff, lateral flow, base flow, snow melt and glacier melt.
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Figure 2-2: Conceptual scheme of the hydrological model SPHY

The SPHY model was calibrated for the 1990-2000 period (using 1988-1989 as spin-up years) against
discharge observations for the Segura and Upper Tagus basin. The calibration took place using the
Statistical Parameter Optimization Tool for Python - SPOTPY (Houska et al., 2015) and the Maximum
Likelihood Estimation algorithm on the most sensitive parameters which were previously diagnosed.
RMSE of monthly discharge is chosen as the statistic for the objective function. The following parameters
were selected for calibration: caprisemax: initial capillary rise [mm]; deltagw: delay in groundwater
recharge [days]; kx: flow recession coefficient or routing coefficient [-]; rootdepthflat: thickness of
rootzone [mm]; root_ksat: saturated hydraulic conductivity rootzone [mm/day]; sub_ksat: saturated
hydraulic conductivity subsoil [mm/day]. The model performance statistics is assessed using the
following metrics: (Root Mean Square Error, Percent Bias, Nash-Sutcliffe Efficiency and the Correlation
Coefficient) for both the calibration and validation periods.

Performance indicators for skill diagnosis

The analysis focused in a first step on validating discharge predictions for the user “benchmark” system,
as well as for the dynamic system, against observed measurements. Performance was analysed per
target season grouping a three-month forecast initialized in January, April, July and October.

A second step focused on validating the drought index of interest to the user comparing values derived
from model output and user-forecasts. The multitude of governing attributes qualifying the forecasts
implies that no single score measurement on its own would suffice to describe the quality of the hindcasts
(Mason and Stephenson, 2008).



The correlation coefficient (CC), the mean absolute error (MAE) and the mean error (ME) was used for
deterministic test scores and the continuous Ranked Probability score (CRPS) and the Relative operating
curve (ROC) to assess probabilistic test scores. A more detailed documentation of those statistical
methods is presented in deliverable 4.2 of IMPREX.

In order to compare forecasts issued by the dynamic seasonal forecasting model to the user benchmark
forecasting system, we calculate the skill score to highlight the relevant improvement of a forecast over
a considered reference forecast where 0 indicates no improvement and 1 highlights a perfect score.
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3.2

System performance

This section evaluates the performance of the dDSS by using re-forecasts. Besides, also an operational
implementation was done with the dDSS using operational forecasts, which was evaluated with the user
for the 2018/2019 winter period as a 3-month pilot (section 3.4).

Bias adjustment of meteorological forecasts

Figure 3-1 shows bias adjustment results for the Upper Tagus basin. The mean bias adjustment ratio
was of 1.1 for the Upper Tagus. There is a general underestimation of precipitation when comparing the
ECMWF SEAS5 ensemble mean with Spain02. This underestimation is especially large in October,
November and December. On the contrary, an overestimation is observed for March and June.
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Figure 3-1: Upper Tagus monthly precipitation climatology (period 1980-2010). Boxplots represent ECMWF-
SEASS5 25 ensembles mean, while triangles represent the Spain02 observational reference.

Calibration and verification of the hydrological model

In addition to the performance statistics for both the calibration (1990-2000) and validation (2001-2010)
periods, hydrographs for the Entrepefas of the Upper Tagus basin are shown in Figure 3-2. For other
stations, similar outputs were generated (not shown here).

Table 2 provides a summary of the performance statistics. Overall, given the values obtained for the
calibration performance statistics, the calibration and validation can be considered satisfactory, although
certainly also showing that there is scope for improvement, most likely related to forcing (rainfall) and
limitations in the model structure, for example due to the complex and unknown groundwater dynamics
in the upper Jucar and Segura.
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Figure 3-2: Hydrographs for station 1 (Entrepenas), calibration (1990-2000) and validation (2001-2010)

periods.

Table 2: SPHY model performance for two Upper Tagus stations for the calibration (1980-2000) and validation
periods (2001-2010).

Station 1 Upper Tagus Station 2 Upper Tagus

Calibration Validation Calibration Validation
RMSE (md/s) | 7.2 8.5 6.5 7.8
PBIAS (%) 4.8 -8.9 16.5 -10.0
NSE 0.6 0.6 0.6 0.3
cc 0.8 0.8 0.8 0.6

Forecasting system performance

In this section, discharge output for the reference run, the SPHY-ECMWF coupled model system and
the user forecast are compared to observed measurements. Forecasts initialized at the beginning of
January, April, July and October are considered with a forecast lead time of three months. These are
grouped as average values into 4 categories highlighting different periods throughout the year: (January-
February-March) JFM, (April-May-June) AMJ, (July-August-September) JJA and (October-November-
December) OND. The analysis covers the period from 1982 to 2010 where data is available consistently
for all the different setups considered.



Summary of tri-monthly mean reservoir inflow for the long-term period (1982-2010)
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Figure 3-3: Comparison of SPHY-ECMWF_SEASS5 mean output, the reference run, the user forecast and the
observation long term (1982-2010) 3-month average streamflow. The white star represents mean values.
Distribution of the timeseries are represented for the four periods as box-and-whisker plots.

Figure 3-3 illustrates the different simulated and observed long term 3-month streamflow averages for
the period 1982-2010. The distribution of each timeseries within the trimester are represented as box-
and-whisker plots where the boxes refer to the 25-75% inter-quantile range and the band inside the
boxes to the median value. The whiskers represent 1.5 times the inter-quantile range and values beyond
are plotted as single data points. The reference run distribution and mean value indicates a minor
overestimation for JFM, JAS and OND periods and an underestimation for the AMJ period compared to
observations. The SPHY-ECMWF_SEAS5 mean ensemble distribution and mean values tend to
resemble very much the one resulting from the reference run, showing similar albeit more pronounced
overestimation/underestimation behaviour compared to observations. The user forecast mean values
and distributions show reduced variability along the years and among trimesters compared to the other
methods. Streamflow values in that case and for all periods are underestimated compared to
observations.

Table 3 reports on correlation coefficients for user forecast and mean SPHY-ECMWF SEAS5 output
against observation data. The results show a better performance for SPHY-ECMWF SEASS5 data in
correlating with observation for JFM, JAS and OND periods. The higher correlation during seasons of
larger meteorological variability indicates an added value of seasonal meteorological forecasts during
those periods. Assessments such as ESP and reverse ESP experiments allow detection of sources of
predictability, but were not performed for this study. Nevertheless, the sensitivity analysis on sources of
skill in Europe developed in deliverable 4.2 of IMPREX showed that seasonal meteorological forecasts
provide the dominant source of predictability for the area of study over considered periods and lead
times.

Table 3: Pearson correlation coefficients for streamflow forecasts against observation data with associated
P-values (ns 2 0.1, * < 0.1, ** < 0.01, *** < 0.001, **** < 0.0001)

JFM 0.33* 0.65"*"
AMJ 0.34* 0.34*
JAS 0.52** 0.75****
OND 0.33*
FutureWater 14



Table 4 differentiates between real and theoretical skill. Real skill is measured by the correlation
coefficient between the SPHY-ECMWF SEAS5 mean output and observations, whereas theoretical skill
measures the performance relative to the reference run. This computation is usually adopted to mask
the error coming from the hydrological model itself when calculating levels of skill (Greuell et al., 2018).
The ratio illustrates the level of agreement between those two setups. Degradation of skill for this case
study is reported to be largely dependent on the season with very little differences noted for JFM and
JAS periods whereas mild ones for OND and particularly large ones for AMJ. The real skill is lowest in
spring and autumn which are the rainiest seasons: most likely due to a combination of data deficiencies,
especially in rainfall data as well as the complex system response not fully captured by the hydrological
model.

Table 4: Comparing Correlation coefficients between SPHY-ECMWF SEAS5 mean verified with observations
(Real Skill) and Reference run (Theoretical Skill)

Real Skill

Theoretical Skill Ratio

JFM 0.65 0.72
AMJ 0.34 0.83
JAS 0.75 0.97 0.77
OND 0.33 0.5 0.66

Table 5 highlights the forecast bias, the mean error between observations and the two forecasting
systems. The user forecast underestimates discharge for all periods, in particular for JFM and AMJ
periods. The model-based system SPHY-ECMWF_SEASS reports lower bias for all considered seasons
in particular JAS although that period is known to be extremely dry with very low meteorological and
hydrological activity. Positive bias is reported in JFM and OND, which is possibly due to the hydrological
model underestimating groundwater storage in addition to the ECMWF data overestimating precipitation
levels as reported in Figure 3-1 and Figure 3-3.

Table 5: Mean error between observations and streamflow forecasts for the considered periods.

P A

JFM

AMJ -7.9 -10.0
JAS -0.4 -3.2
OND 6.6 -6.6

The CRPS is reduced to MAE if the forecast is deterministic. This makes it possible to compare the
probabilistic forecast of SPHY-ECMWF SEASS to the user forecast both verified against observations in
Table 6. Errors among forecasting systems tend to be similar and of the same magnitude with largest
differences in JFM season and smallest in JAS season. The latter can be explained by the particularities
of seasonality as low hydrological and meteorological activity is experienced during JAS and the opposite
is true for JFM. Computing the skill score based on MAE/CRPS in Table 7 shows that differences are
minor. The user forecast performs slightly better during the dry season JAS whereas the probabilistic
forecast provides better predictability for JFM and AMJ.
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Table 6: MAE and CRPS between observations and user forecast in addition to both SPHY-ECMWFSEAS5
deterministic and probabilistic form.

A PP

JFM

AMJ 11.9 12.4 8.9
JAS 3.5 3.7 4.2
OND 9.1 7.9 8.2

Table 7: Skill score based on MAE/CRPS for both deterministic and probabilistic SPHY-ECMWFSEASS
coupled systems using the user forecast as reference

Skill score based on SPHY-ECMWF SEAS5 Mean
MAE/CRPS

SPHY-ECMWF SEAS5_Ens

JFM
AMJ

JAS

OND

Forecasting the drought index for Tajo-Segura Water transfer system

The Tajo-Segura water transfer system is managed by the Segura river basin authority and is governed
by a drought index derived from discharge. The value of the drought index categorises the drought risk:
No drought, Pre-Alert, Alert and Emergency, upon which different operational decisions are made. For
that purpose, userthe drought index based on the user forecast model (currently used as input for the
water transfer system) is compared to output from the coupled SPHY-ECMWF forecasting system.
Results are shown in Figure 3-4 where both forecast derived indices are plotted against the actual
drought index computed using observed discharge values.
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Figure 3-4: Drought index for the Tajo-Segura Water Transfer system (Period 1981-2010)

From a general point of view, both timeseries reflect a high performance in predicting the real drought
index. This high level of predictability is somewhat surprising given the evaluation presented in the



previous section. However, it can be explained by the fact that the index hardly depends on forecasted
discharge: other (observed) variables such as current reservoirs levels are dominant and lead to large
agreement between the two selected methods. Nevertheless, some differences between the systems
are noted leading in some cases to different conclusions regarding predicted drought category.

A closer look at the user forecast and SPHY-ECMWF_SEASS5 coupled forecasting system performance
in predicting the drought can be seen in Figure 3-5 and Figure 3-6. Several ROC curves are plotted
together with AUC (Area under the curve) values showing the ability of the different methods to
successfully discriminate between events and non-events, here correctly predicting a particular drought
category. A high success rate for both methods is noted amongst all categories, in particular for normal
and emergency levels with slightly worse performances for the mid alert and pre-alert categories.

Table 8: Skill score based on the ROC metric for probabilistic SPHY-ECMWEFSEASS5 coupled system using the user
forecast as reference

ROCSS ‘ LD1/LD2/LD3 LD3
JFM 0.81 0.77
AMJ 0.68 0.67
JAS 0.77 0.20
OND 0.89 0.64
Predictability of different drought categories using the User Forecast Predictability of different drought categories using ECMWF S5
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Figure 3-5:ROC curves for drought index predictability using the User Forecast on the left and the SPHY-
ECMWF SEASS5 probabilistic system on the right for the long period (1982-2010)
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Figure 3-6: ROC curves for drought index predictability comparing all forecasting methods for lead time 3
(Mars, June, September and December) over the long period 1982-2010

Conclusion

Seasonal hydrological forecasting systems are increasingly tested in scientific research and operational
case studies for Europe (MeiBner et al., 2017). Despite showing relatively low skill relative to other
continents, funding policies over the last two decades have encouraged efforts in improving such
systems over statistical methods of prediction (Barnston et al., 2012). The work presented here fits well
into this progress, comparing a user statistical forecasting method to a dynamic model-based forecasting
method in generating streamflow value for a particularly selected basin. The distributions of 3-month
average streamflow outputs are better represented by the dynamic model as user forecast tend to show
low variability between and among seasons (see Figure 3-3).

Considered metrics and in particular for MAE/CRPS and ME (scores of bias) have shown that the
difference between the two forecasting systems is relatively small with the dynamic process-based model
performing slightly better during winter periods JFM and AMJ (see Table 6 and Table 7). Although no
single metric can represent a comprehensive comparison between two forecasting methods, case-to-
case discrimination as indicated by correlation skill reflects a fundamental ability of a prediction model
(Murphy and Epstein, 1989). It is understood that bias-related problems are more easily correctable



through calibration efforts (Barnston et al., 2012). To that end, the seasonal dynamic model has
surpassed (Table 3) the user forecast in correlation skill for all considered periods except AMJ where it
reported similar predictive skill. Furthermore, more sophisticated techniques for statistical post-
processing of seasonal flow forecasts based on re-forecasts could also increase forecasting skill.
Considering forecast of drought indices, both systems report a very high ROC score, but with the dynamic
process-based performing slightly but consistently better than the user forecast among all categories
and lead times.

With performance relatively comparable between the two systems (the dynamic system only slightly
outperforms the benchmark), it is important to point out the fundamental differences between the two
selected methods. The user forecast model is based on a statistical relationship established between
predictand and predictors whereas the mechanistic model relies on estimating equations that describes
complex relationships between biophysical processes. The added value of the first system relates to its
computational easiness and speed of processing when compared to the more demanding resources of
mechanistic models. Nevertheless, the skill derived from empirical models relies heavily on the
assumption of climatological stationarity. To build up a statistical model, a long series of data is
necessary in order to derive a robust relationship between predictand and predictors. This is increasingly
problematic in future climate change scenarios estimated to impact drastically the current climatology
and hence the predictive capacity of empirical models (Ogutu et al., 2017).

Although dynamic models require large historic datasets for skill verification in addition to a reference for
defining variable anomalies, such information is not relevant to their basic functioning (Barnston et al.,
2012). Skill derived with coupled seasonal forecasting models is usually dependent on the presence of
slow and predictable variations in soil moisture, snow cover, sea-ice, ocean surface temperature in
addition to the behaviour of the atmosphere within those boundary conditions (Turco et al., 2017).
Currently, the limiting factor in reference to skill relates to initialization errors in addition to bias drifts
introduced by the imperfect numerical representation of the different physical processes occurring on a
multitude of temporal and spatial scales (Barnston et al., 2012). It is likely that these shortcomings will
continuously be improved in time increasing the quality gap between statistical and dynamic methods
(Chen and Cane, 2008).

Overall, the performance assessment showed that the developed dynamic forecasting system can in
principle provide valuable information for drought-related decision-making in the Segura river basin.
However, in practice, the use of these systems may still be limited due to various non-technical factors.
To obtain information on the usefulness from a users” perspective, the Segura forecasting system was
put in operational mode during one winter season. The next section summarizes this pilot effort.



4.1

4.2

Operational evaluation

Specifications of Seasonal Hydrological Outlook

For an operational evaluation, the model was implemented in an operational mode. For this, close
collaboration took place with two IMPREX partners: UK MetOffice and Deltares. The SPHY model
presented before was used to provide the hydrological predictions for a forecast period of three months
ahead. Delft-FEWS was used to put the system in operational mode. Figure 4-1 shows a schematic of
the setup.

Key specifications are:
Glosea5 NAO index predictions as proxy predictor for rainfall values (doi:10.1175/JAMC-D-15-
0102.1, 2016)

e The Spatial Processes in HYdrology model (SPHY) for streamflow simulation, set up for the
upper Segura basin (2x2 km). (doi:10.5194/gmd-8-2009-2015, 2015).

e The SPHY model is calibrated against discharge observations using the SPOTPY tool
(doi:10.1371/journal.pone.0145180,2015.) (Simulated Annealing algorithm, RMSE objective
function).

¢ Initial conditions used for the operational forecast are retrieved from the ECMWF EFAS system.
(doi:10.2760/806324, 2019)

e Historical runs in order to generate the climatological distributions are obtained using the E-
OBS gridded dataset (doi:10.1029/2017JD028200, 2018)

e The whole coupled model-based system runs on the FEWS system
(doi:10.1016/j.envsoft.2012.07.010, 2013)

e  Output of interest are 3 month predictions initialized in Dec, Jan and Feb

sphy_segura

AN |

Rainfall Dec-Feb Jan-Mar Feb-Apr Streamflow Dec-Feb Jan-Mar Feb-Apr
44%

38%

Figure 4-1. Schematic of the setup of data flows of the operational setup

Description of pilot during winter 2018-2019

The dynamic forecasting system for the Segura river basin was used for producing operational forecasts
during the winter 2018/2019, targeting the Segura River Basin Authority as user. A tailored risk outlook
was developed and co-designed with the user — meaning that there were several iterations. The principal
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aim of this pilot was to receive feedback on the possibilities and limitations to integrate the tool into their
decision-making.

The user received the seasonal risk outlook in the form a monthly bulletin, using seasonal forecast data,
during three consecutive months. The bulletin was sent by email to the Water Resources Planning
department as soon as the bulletin was released, in December 2018, January 2019 and February 2019.
The bulletins included a forecast about rainfall and flows three months ahead. During the service
provision, the information in the bulletins was evaluated by the user, by means of informal meetings and
feedback by email. More details on the risk outlook and the bulletin can be found in Deliverable 14.5 of
the IMPREX project (www.imprex.eu).

The bulletins included:
e Probabilistic values for expected precipitation and streamflow conditions for the upcoming 3
month period.
e Information on how to interpret those values against a climatological forecast where each
category is predicted with a 1/3 chance of occurrence.
e Explanation on possible sources of predictability and main mechanisms behind the forecasting
system to make sure that the decision maker can value the displayed results.

4.3 Example of a released bulletin

On the four next pages, one of the Seasonal Hydrrological Outlooks is presented. This particular one
was produced for the forecast period of Feb-April 2019.
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4
Prondstico estacional de la

‘D Titulares

Periodo Prondstico Fecha prevision Fecha documento
Febrero 2019 a Abril 2019 01-Febrero-2019 11-Marzo-2018
Resumen

Para el periodo desde el 1 febrero 2019 hasta el 30 de abril 2019 :

* Los prondsticos de precipitacidén para las dos regiones de interés se prevén
superiores (alta probabilidad) al valor normal observado en condiciones
promedio.

* Existe una baja probabilidad de padecer condiciones mas secas que la media
en términos de precipitaciones. Como referencia, durante el mismo periodo del
afio anterior, se registraron una situacion andmala con precipitaciones
inferiores al valor normal.

e El prondstico de caudal arroja una prediccién inferior (alta probabilidad) al
valor normal observado en el mismo periodo. El pronéstico de precipitacidon
para el periodo de estudio, con valores superiores a a lo normal, no compensa
el efecto de bajo caudal observado al inicio del periodo de simulacion.

A Prondstico de caudal

[: Cabecera
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Prondstico estacional de la

Precipitacion

Prob. Superior | Prob. cercana al Prob. Inferior al
Febrero 2019 - al valor valor normal valor normal
Abril 2019 Titular normal (invierno tipico = (invierno tipico =

(invierno 33%) 33%)

tipico = 33%)

Probabilidad
aumentada de
precipitacion por
encima de lo normal
Probabilidad
aumentada de 56% 36% 8%
precipitacion por

encima de lo normal

58% 30% 11%

Prediccion de probabilidad de
precipitacion (solo Cabecera)

Prediccion de probabilidades de
precipitacion (toda la cuenca)

M Superior al M Superior al
normal normal

H Cercana al B Cercana al
normal normal
Inferior al Inferior al
normal normal

Ejemplo de afios con valores por encima de la normalidad: Ejemplo de afios con valores por encima de la normalidad:
2004, 2005, 2010 2003, 2010, 2014, 2017

¢Qué significan estos valores?

La prediccién de precipitacién se agrupa en tres categorias segun los valores observados
en los periodos (trimestres invernales) anteriores. Las figuras de arriba muestran la
probabilidad de ocurrencia de cada categoria segun la prediccion realizada para el periodo
simulado del afio anterior. Bajo condiciones normales-promedio, la probabilidad de
ocurrencia de cada una de las categorias es del 33%.

Para una categoria concreta, una prediccidn superior al 33% significa un aumento de la
probabilidad de ocurrencia; una prediccion inferior al umbral del 33% implica una
reduccion en la probabilidad de ocurrencia de esa categoria. Es importante subrayar que
la precipitacion total dentro de una categoria no es necesariamente idéntica o representa
codiciones de abundancia o escasez igualmente severas.
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Prondstico estacional de la

@ Caudal

Prob. Superior | Prob. cercana al Prob. Inferior al

Enero 2019 — al valor valor normal valor normal

Marzo 2019 Titular normal (invierno tipico = (invierno tipico =
(invierno 33%) 33%)
tipico = 33%)

Probabilidad

aumentada de 17% 34% 49%
precipitacion por

encima de lo normal

Prediccion de probabilidad de caudal
(aguas arriba de Cenajo)

7% M Superior al
° normal
m Cercana al
normal
Inferior al
33%
normal

¢Qué significan estos valores?

La prediccién de caudal se agrupa en tres categorias segun los valores observados en los
periodos (trimestres invernales) anteriores. Las figuras de arriban muestran la
probabilidad de ocurrencia de cada categoria segun la prediccion realizada para el periodo
simulado del afio anterior. Bajo condiciones normales-promedio, la probabilidad de
ocurrencia de cada una de las categorias es del 33%.

Para una categoria concreta, una prediccidn superior al 33% significa un aumento de la

probabilidad de ocurrencia; una prediccién inferior al umbral del 33% implica una

reduccion en la probabilidad de ocurrencia de esa categoria. Es importante subrayar que

el caudal total dentro de una categoria no es necesariamente idéntica o representa
_condiciones de abundancia o escasez igualmente severas.
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V-

Prondstico estacional de la

Metodologia para realizar el prondstico estacional

En los ultimos afios, los modelos informaticos de prondstico meteorolégico han sido
mejorados y empleados para hacer predicciones estacionales. El prondstico estacional es
mas dificil que el prondstico diario por lo que estos modelos solo pueden aportar
indicaciones sobre la probabilidad general de que una estacion sea humeda o seca,
templada o fria. Esta informacion permite evaluar la probabilidad de que ciertos eventos,
por ejemplo sequias, ocurran. En la Cuenca del Segura, se ha comprobado que estos
modelos pueden pronosticar la precipitacion con cierta efectividad.

Adicionalmente, los prondsticos de caudal se han obtenido mediante modelizacién del
sistema hidroldgico. Para una resolucion temporal estacional, los prondsticos derivados de
estos modelos dependen del volumen de agua almacenada en el sistema (acuiferos,
embalses) y de la cantidad de agua de lluvia precipitada.

El prondstico de caudal del Segura es el resultado de la combinaciéon de modelos de
prondstico meteoroldgico y modelos hidrolégicos que han sido integrados bajo un mismo
marco metodolégico desarrollado dentro del proyecto IMPREX (www.imprex.eu). Posibles
escenarios de precipitacion derivados de un modelo de prondstico meteorolégico pueden
ser usados con un modelo hidrolégico para evaluar las probabilidad estacional de caudal y el
volumen de agua potencialmente disponible para satisfacer las demandas de agua para los
diferentes sectores productivos.

¢Como de fiable es el prondstico?

Las probabilidades calculadas representan los niveles de confianza estimados para el rango
de posibles resultados o categorias consideradas.

¢Qué genera un aumento en la probabilidad de ocurrencia de evento huimedo?

Los patrones meteoroldgicos de invierno observados en Europa estan influenciados por los
patrones climaticos globales. La ocurrencia de los fenémenos de El Nifio/La Nifia en el
Océano Pacifico Tropical, o el patron de temperaturas en el Océano Atlantico Norte pueden
desencadenar cambios en los patrones meteoroldgicos promedio en la estacién invernal.
Este inverno, hay un evento Nifio de intensidad moderada, que tiende a favorecer un patrén
de reduccién y aumento de la precipitacion en el Norte y Sur de Europa, respectivamente.
Este fendmeno se desencadena a través de un “puente” entre el Pacifico y Europa que se
caracteriza por fuertes vientos en altura, y que pronostica una mayor probabilidad de
ocurrencia de condiciones humedas en la cuenca del Segura al final del trimestre invernal.

Créditos

Este prondstico usa prondsticos estacionales del Servicio Meteoroldgico Nacional del Reino
Unido. Se agradece el soporte brindado por el proyecto IMPREX financiado por la Unidon
Europea a través del Programa H2020 de Investigacion e Innovacion
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4.4

Evaluation by the user

During the evaluation period, several interactions took place with the technical staff and head of the
planning department of The Segura River Basin Authority. During initial meetings, they indicated that a
dynamic seasonal forecast of drought indices could potentially improve their decision-making. The
drought indices they use currently perform well and in principle they see no need to change them.
However, they see scope in studying the usefulness and skill of seasonal forecasts of these indices over
the following months or next year. In some occasions during drought periods, some stakeholders of the
Basin Authority had requested a seasonal outlook of water resources availability, but so far the authority
had not been able to respond to this sort of requests, as no forecasting system is available nowadays to
them (only the statistical method for the connected Upper Tagus).

Figure 4-2. Intermediate evaluation meeting with Jesus Garcia (head Planning department, right) and Jaime
Fraile Jiménez de Muhana (drought expert, left) of Segura River Basin Authority

The user evaluation during the three-month pilot was performed by means of a combination of physical
meetings and interaction through email and phone calls. After finalizing the pilot, a final reflection was
requested from the technical staff and the head of the Water Resources Planning department. The
feedback received can be summarized in the following points:

e The information presented in the bulletins was considered clear and understandable for the
technical staff working with this type of information. Key in this aspect was considering the
feedback from user in the design of the bulletin.

o The bulletins were received with high expectations, each time they were delivered. The user is
well aware of the probabilistic nature of the forecasts and the inherent limitations in skill.
Therefore, during this pilot the information was not used to modify any decisions: decisions
followed the stipulated procedures as in the Drought Management Plan.

e The performance of the system for the testing period was limited (the forecasts were relatively
optimistic in terms of rainfall while rainfall amounts turned out to be relatively low). This made
the user reluctant in going forward with the integration of dynamic seasonal forecast information
in their decision-making, given the current state-of-art. Also, they highlighted that this would
require a large effort in engaging with and convincing of all the water-users that depend on the
allocation decisions of the user.

Overall, the water authority emphasized to be very much interested in a longer testing period, at least

during one additional winter. Also, the user sees scope in using the three-month forecasts of rainfall for
generating meteorological drought index (SPEI) forecasts. The user has just integrated SPEI in their
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drought monitoring system (and corresponding Drought Management Plan). The possibility of
forecasting SPEI is something that the user would like to study in the near future.
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Annex 1 - Q&A of the Seasonal Hydrological Outlook
for the Segura River Basin

Forecast period? 3-month seasonal outlooks in December, January and February
Place? Segura River Basin (upstream of the Cenajo dam, 2602 km?)

\ g
ions

A il (] Wi r:‘-‘v'v!‘" b
Orchard in Southeast of Spain, Murcia heavily impacted by drought condit

Decision maker? The River Basin Authority for the Segura (Confederacion Hidrografica del
Segura— CHS)

Objective? To guarantee proper water allocation for the different concerned stakeholders
based on sustainable water transfer decisions, namely the irrigated agriculture community.
Key predicted variables? Precipitation and discharge forecasts for the next 3-months.

How are these forecasts made? In recent years, computer weather forecast models have
been extended to make forecasts for the season ahead. Forecasting for this range is more
difficult than for the next few days, so we can only indicate the likelihood of the season being
wet or dry, mild or cold, overall. Nevertheless, this allows an assessment of how likely certain
hazards like drought may be. Predictive skill is found over the Segura basin in rainfall
predictions for winter, these are used as input to produce hydrological seasonal forecasts.
Streamflow forecasts are obtained by using hydrological models describing the various parts of
the hydrological system such as aquifers, rivers etc. For seasonal timescales, forecasts from
these models depend on the water stored in the hydrological system on the moment of the
forecast, and on the predicted amount of rainfall for the next months. The Segura seasonal
outlook benefits from a combination of weather (GloSeas5) and hydrological models (SPHY)
into an integrated framework (Delft-FEWS), a technique that has been developed within the EU
IMPREX project.

How is this information used? This information is communicated with the Segura river basin
authority in the form of informative bulletins. These include probabilistic values for expected
precipitation and streamflow conditions in the Segura river basin. It includes an explanation on
possible sources of predictability to make sure that the decision maker can value the displayed
results.
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Forecast probabilities for average
rainfall (Upper Segura)

Above-
Normal
M Near-
Normal
M Below-
Normal

Forecast probabilities for average
streamflow (Upper Segura)

Above-
20% Normal
® Near-
0,
Normal
0,
30% H Below-
Normal

o What do these figures show? Rainfall/streamflow is grouped into three categories based on
local observations of past winters. The figures above show the probability of each category
occurring depending on the forecast for winter 2019. For a typical winter, the chances of a
category to occur is of 33%. Consequently, a forecast predicting a value above that threshold
(33%) for a particular category implies an increased chance for that category to occur. In the
same way, a forecast value below that threshold implies a decreased chance of occurrence.

o How confident is this outlook? The probabilities reflect the level of confidence — these can
be seen in the above diagrams, which show the level of confidence in the range of possible
outcomes.

e More info? Contact Johannes Hunink (j.hunink@futurewater.es)
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