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Summary

A Dutch consortium has joined in the project “Dutch network on small spaceborne radar
instruments and applications (NL-RIA)”, led by TU Delft. The objective is to bundle the radar-
related knowhow available in The Netherlands, and fill the knowledge gaps, in order to boost
SmallSat radar-based Earth Observation technology. The task of FutureWater in this project is to
study challenges and requirements for applications of altimeter data for water resources
assessments. This report presents a short literature review, existing databases that are currently
used for this type of studies, two case studies performed by FutureWater in which altimetry data
was used. Based on these case studies in the final chapter, a few recommendations and
requirements are put forward on revisit frequency and accuracy for the design of an altimetry
mission.
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1 Introduction

1.1 Background

Since its beginning, the space sector has been dominated by space agencies and large
corporations acting as large-scale integrators (LSI), with smaller stakeholders contributing
specialized subsystems. Dutch technology has been particularly successful in implementing and
supplying optical remote sensing instruments for air quality and pollution monitoring, but also in
the field of Radio Frequency (RF) technology and instruments: Dutch parties are world players
in the areas of antenna technology, micro-electronics, and radar instrumentation.

In the last couple of decades, there is an increasing focus on small spacecrafts, light weight and
agile development cycles, and dramatically reduced costs. There are several successful missions
recently both for optical imaging as well as in the field of microwave remote sensing. This
development is likely to strengthen further: commercially driven light-weight missions
emphasizing the delivery of high-resolution data with very short revisit times over specific areas
of interest. This type of missions provides a new level-field, with lower technological and financial
entry barriers, for the development of miniaturized microwave Earth Observation systems and
their exploitation.

A large Dutch consortium has joined in the project “Dutch network on small spaceborne radar
instruments and applications (NL-RIA)", led by TU Delft. The objective is to bundle the radar-
related knowhow available in The Netherlands, and fill the knowledge gaps, in order to boost
SmallSat radar-based Earth Observation technology. The focus of the project is on microwave
remote sensing.

A key advantage of microwave remote sensing compared to optimal imagery is the all-
weather/day and night observation capability, which greatly enhances the observation
opportunities. This includes the ability to observe through clouds. Microwave remote sensing
system include passive (radiometers) and active ones (radar altimeters, Synthetic Aperture
Radars, precipitation radars, scatterometers, etc). This study will focus on altimeters and thus on
active radar.

Satellite-based applications of altimeter technology have been operationally used for several
decades. Altimeters are used to measure wave height and wind over oceans, resulting in
information on sea-level rise, ocean currents, eddies, and the El Nifio effect. Innovative systems
which are currently under development are expected to measure also water levels over inland
waterbodies. The challenge is here to designate the waterbody from surrounding uprising
landmasses which are at shorter distances and have far higher backscatter.

Continuous monitoring of fresh water bodies like rivers, lakes and artificial reservoirs, is important
for water resources management, and thus for the principal water users in river basins, such as
domestic, industrial and irrigation demands. Also, potentially there can be applications of this
information for flood early warning, renewable energy (hydropower) and for the transport sector

(shipping).

The SWOT (Surface Water and Ocean Topography) is a mission being developed by NASA and
other agencies and is planned to be launched in 2020, having as a key purpose to measure inland
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water bodies using the latest radar technology. This mission is relatively expensive and will have
a limited revisit capability. There may be an opportunity for smaller low-cost missions with less
accuracy but higher update rate.

For the management of fresh water resources at the basin level, information on the status of
surface water bodies is critical. In many areas in the world however, this information is scarce.
Especially in developing countries, water level measurements of lakes and reservoirs are hardly
available. In Europe, ground-based measurements are more common but sometimes performed
by the entity operating the reservoir or river abstraction, and thus not available to water resources
managers for the purpose of water resources planning. Also in transboundary (international) river
basins, ground-based information is often not shared, so satellite-based information can be of
high value for certain end-users (Zhang et al., 2014).

Altimeter measurements of rivers, lakes and artificial reservoirs and be used for two purposes:
- Strategic planning of water resources, which requires water resources assessments to
support for example river basin management plans
- Operational management of water resources, for example for the hour-by-hour
operational management of water release from reservoirs for hydropower.

2015 | Fuensanta

Figure 1. Water levels of the Fuensanta reservoir, Segura river basin, Spain, in 2015 (left)
and 2017 (right). Source: La Verdad

This study focuses on the first type of applications: strategic planning and decision making on the
long-term. Especially for this purpose, satellite-based altimeter data has the potential to fill an
important information gap. For the second type of applications: operational water management
and short-term decision making, typically ground-level water level sensors are more cost-effective
than satellite-based solutions!.

The following section presents a few related applications and summarizes the key challenges of
using altimetry data for water resources assessments.

' https://www.futurewater.nl/projects/intogener-chile-3/
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1.2 Current challenges of using altimetry data for water resources
assessments

Up to today, ground-based measurements of water level data for water resources assessments
are more commonly used than satellite-based measurements. Streamflow gauges typically
measure water levels, from which streamflow is derived using a stage-discharge relationship.
Ground-based equipment to measure water levels of lakes and reservoirs are used to establish
water balances of these water bodies and assess inflows and outflows.

However, in many areas in the world, ground-based measurements are not available. Especially
in mountainous areas, but often also in downstream areas, especially in developing countries,
information on the status of water bodies is scarce. This is problematic as for water resources
planning this information is essential to calibrate models and build decision support tools.

Increasingly, satellite-based altimetry datasets are becoming a useful resource to fill the data
gaps for this type of studies. Over the last decade, several researchers are developing
methodologies to derive streamflow from satellite-based altimetry of water levels in rivers (Kim et
al., 2019a; Sichangi et al., 2016). Kim et al. (Kim et al., 2019b) provides an overview of the
methods used for this purpose. For assessing streamflow, certain information on the local river
conditions is necessary to establish a relationship between river level and flows. This, next to the
challenges in terms of accuracy of the water level measurements, has limited so far its use for a
few wide rivers like the Amazon (e.g. da Silva et al., 2010). Few studies have been dedicated so
far to narrower rivers; e.g. Domeneghetti et al. (2015) show that their may be potential for radar
altimetry to contribute to the calibration of hydraulic models.

The use of altimetry data on lake and reservoir levels is closer to operational use in actual user-
oriented applications, as will be discussed afterwards. The accuracy of these data are typically in
the order of 5 to 50 cm (Politi et al., 2016). The disadvantage of altimeters is that they can only
return measurements from along their track, which does not cover the globe. As a result, only
specific water bodies (that fall into the satellite's track) can be detected. Laser altimeters such as
the Geoscience Laser Altimeter System (GLAS) on- board ICESat (Ice, Cloud, and land Elevation
Satellite) are more suitable for relatively small water bodies due narrower footprint size (~100 m)
compared to radar altimeters (several kilometers).

Rather than lake water level, the actual variable of interest for water resources assessments is
lake water storage, or storage fluctuations. Lake water storage cannot be measured directly from
altimetry data. Water level information needs to be combined with bathymetric information of the
water body in order to produce volumetric estimates. To replace the need for bathymetric
predictions, new techniques that make use of visible and IR-based lake surface area estimations
have been developed for the retrieval of lake water volume (e.g. Duan and Bastiaanssen, 2013).

Duan and Bastiaanssen (2013a) tested four global altimetry datasets and proposed a method for
estimating water volume changes in lakes and reservoirs from these databases in combination
with satellite imagery data, and without any in-situ measurements and bathymetry maps. Three
lakes/reservoirs with different characteristics were studied. Two of the three lakes provided
accurate estimates, while for one lake the method showed poor performance when comparing
with in-situ water levels.

Zhang et al. (Zhang et al., 2014) developed a novel classification algorithm in order to improve
the accuracy of water surface area estimations for reservoirs with areas in the order of 100 km?2.
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They smartly combine data from the ICESat/GLAS with relatively high spatial resolution (70 m)
and the MODIS-derived data (several kilometers). This takes away a disadvantage of the ICESat
data which is its short life- time (2003-2010) and low repeat frequency (91 days). The satellite-
based reservoir elevation and storage were validated by gauge observations over five reservoirs.
The storage estimates were highly correlated with observations (i.e., coefficients of determination
larger than 0.9), with normalized root mean square error (NRMSE) between 10 and 25%.

In short, the use of altimetry data so far is limited for water resources planning: decision support
tools and models need data with sufficient observations and accuracy. The key challenges and/or
requirements are:

- Data needs to be available at least on a monthly timestep. Some altimetry datasets have
a lower frequency, which limits their usefulness for this purpose.

- The footprint of satellite-based altimeter data is nowadays at least 100m, but most
platforms have in fact much larger footprints (several km?). This limits their usefulness for
water bodies that are in the order 1-10 km?2. In many river basins, reservoirs are typically
in that order of magnitude, summing a substantial part of the water stored in the basin
(see Figure 2 for all reservoirs in Spain).

- Related to the footprint is the accuracy in the water level measurement: the error can be
up to several decimeters. Depending on the depth-storage relationship, this can limit its
usefulness for a sufficiently accurate estimate of water volume and inflows and outflows.
Case study Il provides more insight in this issue.
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Figure 2. Reservoir capacity versus reservoir area of all reservoirs in Spain

1.3 Existing altimetry databases

Several radar altimeters are currently operational, for example the ERS Radar Altimeter (RA) and
Envisat RA-2, the Poseidon sensors on-board of TOPEX/Poseidon, Jason-1 and Jason-2 (or
Ocean Surface Topography Mission, OSTM), and GeoSat FellowOn (GFO) Radar Altimeter. Data
from these sensors were used to create several databases that include water body level
estimates. This section provides a short summary of the most relevant databases available today.

1.3.1  Global Reservoir and Lake Monitor (G-REALM)

The U.S. Department of Agriculture's Foreign Agricultural Service (USDA-FAS), in co-operation
with the National Aeronautics and Space Administration, and the University of Maryland, are
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routinely monitoring lake and reservoir height variations for many large lakes around the world.
The program utilizes NASA/CNES/ESA/ISRO radar altimeter data over inland water bodies in
an operational manner. The surface elevation products are produced via a semi-automated
process and placed online’. Monitoring height variations will greatly assist the USDA/FAS Office
of Global Analysis to quickly locate regional droughts, as well as improve crop production
estimates for irrigated regions located downstream from lakes and reservoirs. Reservoir and
Lake height variations may be viewed in graphical and text format by placing the cursor on and
clicking the continent and lake of interest. River Lake Hydrology (RLH)

The project currently utilizes near-real time data from the Jason-3 mission, and archive data
from the Jason-2/0STM, Jason-1, Topex/Poseidon, and ENVISAT missions. Data processing
procedures closely follow methods developed by the NASA Ocean Altimeter Pathfinder Project
(see references). When fully operational, updated products are delivered within 7-10 days after
satellite overpass. The resulting time series of height variations are expected to be accurate to
better than 10cm rms for the largest (and more open) bodies of water such as The Great Lakes,
USA, Lakes Victoria and Tanganyika in Africa etc. Smaller lakes or those that experience more
sheltered (from wind) conditions can expect to have accuracy's better than 20cm rms (e.g. Lake
Chad, Africa). Satellite passes that cross over narrow reservoir extents in severe terrain will
push the limits of the instruments with resulting rms values of many tens of centimeters.

1.3.2 Hydroweb (GOHS)

The Hydroweb? project provides continuous, long-duration time-series of the levels of large
lakes with surface areas over 100 km2, reservoirs and the 20 biggest rivers in the world. The
operational measurement series are updated no later than 1.5 days after a new altimetry
measurement becomes available. They cover about 80 large lakes and 300 measurement
points along about 20 major rivers.

The database is based on various altimetry satellites: ERS-1 (1991-1996), Topex/Poseidon
(1992-2006), ERS-2 (1995-2011), GFO (2000- ), Jason-1 (2001-2013), Envisat (2002-2012),
Jason-2 (2008- ) and Saral/Altika (2013- ). The dataset is developed by the GOHS
(Géophysique, Océanographie et Hydrologie Spatiales) group of LEGOS (Laboratoire d’Etudes
en Géophysique et Océanographie Spatiales) in Toulouse. This dataset has been used for
example previously for an irrigation potential study in the Nile basin, see (Droogers et al., 2012)

1.3.3 ICESat-GLAS level 2 Global Land Surface Altimetry data (ICESat-GLAS)

Although the main objective of the Geoscience Laser Altimeter System (GLAS) on the ICESat
(Ice, Cloud, and land Elevation Satellite) mission is to measure the elevation changes of polar
ice sheets between 2003 and 2009, ICESat-GLAS derived water levels in lakes have shown a
high accuracy of around 10 cm (Bhang et al., 2007). The ICESat-GLAS level 2 Global Land
Surface Altimetry data (GLA14) was recently used to derive water levels for lakes (Phan et al.,
2012; Swenson & Wahr, 2009; Zhang et al., 2011a, 2011b). The main strength of the satellite
laser altimeter ICESat is that it can measure at 172 m intervals along-track with a narrower
footprint size of about nominal 70 m compared to the radar altimeters with a footprint size of
several kilometers (Zwally et al., 2002).

1.3.4  Database for Hydrological Time Series of Inland Waters (DAHITI)

The DAHITI (Database for Hydrological Time Series of Inland Waters) dataset has been used
successfully for flooding, lake and wetland studies previously (Schlaffer et al., 2016; Schwatke et

' https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
2 http://hydroweb.theia-land.fr/
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al., 2015b; Singh et al., 2015). DAHITI was developed by the Deutsches Geodatisches
Forschungsinstitut der Technischen Universitat Minchen (DGFI-TUM) in 2013. DAHITI provides
water level time series of lakes, reservoirs, rivers, and wetlands derived from multi-mission
satellite altimetry for hydrological applications. For the estimation of water heights, multi-mission
altimeter data are used, such as Topex (NASA, CNES), Jason-1 (NASA, CNES), among others.
The processing strategy of DAHITI which is described in detail in Schwatke et al. 2015 is based
on an extended outlier detection and a Kalman filtering.

A global study on the use of DAHITI for lake storage evaluation was performed by Busker et al.
(2018). An area-specific application of the DAHITI database for water resources assessments is
presented as case study | in this report.

1.4 Obijective

To understand better the potential for small-scale low-cost altimetry missions, this study aims at
showcasing the use of these data for water resources assessments and assessing how the
uncertainty of satellite altimetry product affects the calibration of a hydrological model, and thus
influences the usefulness of these data for being used in water resources planning. Based on this
study, a few recommendations and requirements were extracted to support the design of such a
mission.

The study consists of two case studies. Case study | shows how altimetry data can be used in a
real-world application, in which this type of data was essential to derive the water balance of a
wetland, and to support an NGO in directing their efforts towards better conservation of the
wetland.

Case study Il investigates how altimetry data could potentially be useful for calibrating
hydrological models: revisit frequency and accuracy (related to footprint and mixed pixels) are
changed by generating datasets of synthetic altimetry products, to assess this factor affects the
performance of the model.




2 Case study I: water balance of a large
swamp

2.1 Introduction

Swamps are ecological systems that provide critical ecosystem services in many areas in the
world. Their dynamics are often difficult to grasp and data on the hydrological processes taking
place is often scarce. To evaluate the relevance of these complex system, data on the water
stored in the wetland can be an essential variable which is in many places in the world not
available.

This case study shows how altimeter data of the large Lukanga swamp (1850 km?) in the Kafue
basin, Zambia, was used to establish the water balance of this highly complex system. The study
was performed for the NGO The Nature Conservancy, in order to demonstrate the importance of
this system in the overall hydrological and ecological functioning of the river basin.

2.2 Methods

2.2.1 Approach

The Lukanga Swamp is a large wetland that functions like a sponge, absorbing water that comes
in during the wet season, or from the periodically flooding of the Kafue through overflow. It buffers
water and releases the water slowly during the dry period.

Figure 3 shows a map with the Lukanga Swamp, the Kafue river in the north-east, the Lukanga
River and the Mufukushi River that are part of the Lukanga watershed. The blue arrows indicate
the water received from the Lukanga watershed. The red arrow the water leaving the swamp to
the Kafue river. The yellow arrows indicate areas with occasional overflow during flood events. It
is important to note that these flows do not occur only as surface flows, but also as sub-surface
flows: the floodplain and the Lukanga swamps are probably well connected through the sub-
surface. However, no data are available on this connection.
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the tools used

To resolve the water balance of the swamp, a combination of tools is used:

Optimal imagery from satellites to assess the flood dynamics, based on flood area
estimates;

A hydrological model (SWAT) to assess the hydrological flows to the swamp, and
precipitation/evapotranspiration;

Altimeter data to validate the storage level fluctuations and the water storage variability
of the swamp;

A water resources system model (WEAP) to integrate all data from observations and the
SWAT model, to assess the water balance.

The water balance is resolved on a monthly timestep for a period of 16 years (2000-2015).

In this report, no detailed descriptions are given of the modelling components of this study. More
details on that can be found in (Hunink et al., 2017a).

The following water balance was established for the system:

P + Qin + Qov — ET — Qout = dS

For an explanation of these variable see Table 1.

For this analysis, the principal unknown variable is Qov: an overflow that occurs occasionally from
the main river system towards the swamp in case of high flooding events in the Kafue river. This
variable depends on the coupling of both systems and is parameterized in the WEAP model. No
data are available on this coupling, so the parameters need to be assessed by inverse modelling

A
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(“calibration”). The inverse modelling is done by matching the water levels as simulated by the
WEAP model, with the water levels from altimetry data.

Table 1. Description of the water balance terms

Abbreviation Variable Description Tool used
P Precipitation Rainfall falling directly on the swamp Station data
< Streamflow Water inflow from the Lukanga SWAT
Qin
watershed
Overflow Occasional surface overflow from Kafue Remote Sensing
Qov

during flood events, and subsurface flow
from the Kafue river floodplain to the
Lukanga swamps

ET Evapotranspiration Evapotranspiration from swamp SWAT

(assumed to be at its potential rate)
Outflow Flow leaving swamp through exit channel Water balance /

Qout to Kafue and subsurface flow between WEAP
Kafue alluvial subsurface and swamp
subsurface

ds Storage difference Difference in water stored in Lukanga Altimeter data
swamps

222 Data

Satellite-based altimeter data has been collected from the DAHITI database ("Database for
Hydrological Time Series over Inland Waters") (http:/dahiti.dgfi.tum.de/en/) (Schwatke et al.,
2015a), previously summarized. The database provides water level data from July-2002 to
October-2010 (Figure 4).
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Lukanga Swamp aeca, zameis el

GENERAL INFO

Target Name Lukanga Swamp
Cantinent Africa

Country Zambia B

Target Type Wetland

Basin Zambezi

Longitude 27.7954 °E

Latitude -14.4054 *N

Perlod 2000-01-01 - 2015-11-03
Ciata Points 220

Min /Max [Avg Height 525 m /111825 m/ 111644 m
Height Variations 301 m

Last Update 2016-09-12 09.47:01
Software-Version 44

ALTIMETER DATA

The data o

seres. An additiona

f the following altimeter missions and corres

* indicates that an additional retracking of the aftimeter measurements was performed

Mission Pass No.
- Envisat 0156, 0543
7 SARAL/ANKa 0156", 0543

Figure 4. Lukanga swamp data profile in the DAHITI database.

2.3 Results

2.3.1

Validation of the intra-annual and inter-annual dynamics of the altimetry data

panding passes have been used for the estimation of the w

ater

el

The altimetry data for the Lukanga swamp is shown in Figure 5. For the period with available

data, three periods with interannual trends in water levels can be distinguished:

September-2002 to December-2006 was a period with an overall decrease of water
levels. Based on an approximate level-volume relationship, this corresponds to a

decrease in volume of approx. 4,000 MCM

In 2007 water levels started to increase. The interannual positive trend was maintained
up to October-2010. This increase corresponds to an additional volume of about 7,000
MCM. Optical satellite imagery confirms that the open water surface is also relatively high

during this period.

The third period with available data ranged from March-2013 to November-2015. As in

the first period, this was characterized by a declining interannual trend.
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Figure 5. Altimetry data of the Lukanga swamp

To verify the verify intra-annual and interannual dynamics, the altimetry data were compared with
historic in-situ data of the water level of the swamp, available between the years 1961 and 1987
(see Figure 6).

Table 2 shows three statistics: the mean annual amplitude, the length of the inter-annual periods
and the standard deviation of the altimetry dataset versus the in-situ dataset. As can be seen, the
statistics are rather similar. This suggests that, in spite of the mixed pixels in the wetland, the
altimetry data are sufficiently accurate to be used for the purpose of establishing the water
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Figure 6. Surface water level at Chilwa Island and at Twenty Village in the Lukanga
Swamp, from 1961-1987.

Table 2. Statistics of the altimetry data and in-situ water level data of the swamp

Statistic Altimetry data (2002-2015) In-situ data (1961-1978)
Mean annual amplitude (m) 0.8 1.2

Interannual periods (years) 4-5 4-5

Standard deviation (m) 0.71 0.65
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2.3.2 Inverse modeling based on altimetry data

The WEAP model was used to assess the water balance. By means of inverse modeling, the
parameters were established that define the coupling between the Kafue system and the swamp.

The parameters that describe this coupling are (1) minimum flow in the Kafue system, and (2)
maximum flow from the Kafue system towards the swamp.

The goal of the inverse modeling is to make sure that there is an adequate match between
simulated swamp levels and observed (altimetry) levels. Figure 7 shows both time series. From
the figure it can be observed that the interannual trends are well captured by the model
(decreasing between 2002-2005, increasing 2006-2010, decreasing 2013-2015). Also, the annual
dynamics (the months in which the lake starts filling and emptying) are well captured. The
correlation between both series is relatively high, giving confidence in the model outcomes
(Pearson correlation coefficient = 0.77). A less adequate fit is seen in the annual amplitude. This

is most likely due to the poor information on the lake bathymetry. This demonstrates the need for
having accurate data to establish the depth-volume curve.
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Figure 7. Simulated versus observed (remote sensing) water levels in the swamp

2.3.3 The water balance of the swamp

Using all information sources, simulations and the altimetry data, the dynamics of the water
balance was assessed for the 15-years period, see Table 3, Figure 8 and Figure 9.
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Table 3. The annual water balance for the swamp, based on the water balance equation
used in this study (see section 2.1). All values in MCM per year.

Inflow Evapot. - Overflow Outflow to Storage diff.
watershed Precipitation Kafue Kafue Swamp
Year Qin ET-P Qov Qout ds
2000 5124 345 0 3545 1233
2001 7149 310 205 B 1726
2002 179 1260 0 3258 2722
20034166 | [794 0 3108 266
2004 8625 688 0 58
2005 1617 1625 0 160l 1609
2006 4850 616 52 1501
2007 4867 455 262 3378 799
2008 5118 690 210 - 4267 -370
2009 5293 760 414 4678 268
2010 5282 - 51 446 - 479 -380
2011 8188 1021 28 3691 1497
20128512 | 724 352 - 3178 36
2013[8858  [1039 50 - 3198 326
20148018 1078 0 595
2015 3031 1118 0 393
Mean 562 817 126 ’—C- 43

To understand better the swamp’s role as a regulating buffer — retaining water in dry periods and
dry years — and providing water to the Kafue river, the following flows were included in one figure
(Figure 8):

- Kafue flow at Chilenga (observed flows), 20 km upstream of Lukanga swamps

- Inflow into the swamp, from the Lukanga watershed

- Overflow from the Kafue river to the Lukanga swamps during flood periods

- Outflow from the Lukanga swamp to the Kafue river

Figure 8 shows the monthly balance for all years, and Figure 9 shows the annual totals, and the
mean monthly values.
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Figure 8. Monthly water balance (2000-2015) of the Lukanga swamp
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Figure 9. Annual and mean monthly water balance (2000-2015) of the Lukanga swamp

Based on this assessment, two key outcomes were found especially relevant for demonstrating
the importance of the swamp:

- The Lukanga watershed is a key water provider to the Kafue river basin, both in terms of
quantity as quality. The swamp regulates the inflow into the Kafue basin to a large extent,
and is thus critical for downstream dependent water users as irrigation and the
environment.

- The principal unknown factor: overflow during high floods occurs in about half of the
years, although in some years this overflow is quite limited. Maximum amounts are
approximately 500 MCM (in 2010). On average this component is about 7% of the flow




in the Kafue river. This suggests that during such a wet year, about 7% of the polluted
load from mining activity upstream in the Kafue is filtered and deposited in the swamp.

2.4 Discussion

From this case study, a few key messages can be extracted related to the use of altimetry data:

- The use of the satellite-based altimetry data to assess the water balance of this system
was critical: without this historic and recent altimetry data, it is not possible to reproduce
the storage dynamics and the water balance.

- For this particular system with inter-annual trends of about 5 years, a time series of
altimetry data of approximately 10 years is recommendable to be able capture the
dynamics sufficiently well. In case no inter-annual trends are apparent, a period of 5 years
can be sufficient.

- Data with a monthly timestep is sufficient for this analysis. Lower frequencies (for
example two months) would reduce the accuracy of the analysis as for the inverse
modeling it is essential to capture well the inflection point where inflow starts to exceed
outflow or outflow exceeds inflow.

- Given the annual variability of the water level and the related water volumes in this water
body, it can be assumed that an accuracy of approximately 10 cm is at least necessary
to assess the water balance of this system well enough. In other words, with an error of
around 20 cm, the annual pattern would not be captured sufficiently well to be able to use
the altimetry data for this purpose.

These points and requirements were roughly inferred from this case study, but not quantified

using for example a sensitivity analysis. This is done in case study I, presented in the next
section.
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3 Case study II: water balance of an artificial
reservoir

3.1 Introduction

In this case study, we assess how satellite altimeter data can be utilized to calibrate a hydrological
model, and specifically how the frequency and data accuracy of the altimeter data affect model
results. The case study uses the open-source SPHY model (Terink et al., 2015), a spatially
distributed hydrological model developed by FutureWater and several partners. Ground-based
reservoir level measurements were used to generate synthetic altimeter data for this modeling
experiment, with different revisit frequencies and measurement errors.

The case study is performed for a sub-humid catchment in the Segura basin, southeastern Spain
with a complex hydrology. This catchment can be considered one of the “water towers” of this
area: crucial for the water provision and water security in the region. Water resources
assessments are thus essential to support decision making and develop water resources
management plans.

For this catchment, data on the reservoir levels are available, retrieved from ground-based
sensors. The data are available online on the website of the River Basin Authority. However, very
often these data are not available, and the elaboration of water resources assessments are
hampered by the lack of data on the status of surface water bodies.

3.2 Methods

3.2.1 Approach

Hydrological modeling for water resources assessments requires:

1. Spatial information on the biophysical attributes of the landscape: topography, soil, land
use, which can be often obtained from remote sensing information, e.g. Hunink et al.
(2016);

2. Meteorological data of a representative period, for example 30 years, for example from
local weather observations or global reanalysis data;

3. Observed data on the surface water bodies and streamflows in the catchment to calibrate
the model.

Often, especially requirement 3 is a challenge: data on the surface water flows and state variables
are scarce, have gaps, or are only available for a part of the catchment. Mostly, streamflow data
are only available for downstream areas, but not for more upstream locations due to difficult
accessibility or lack of economic activities upstream. If there are surface water bodies in these
upstream areas, the model should account for changes in the state of that water body. Satellite-
based altimeter data which accurately reflects water level fluctuations in the water body can
potentially be useful for assessing these state changes.

This analysis consists of three steps:

1. Toshow how important it is to have such information on the water balance of an upstream
water body, the first step in this analysis is to use a model which is calibrated with a
streamflow time series of one single downstream gauge, in order to assess the inflow of
an upstream water body;
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2. Then, a second model is calibrated, but with information on the outflow of the surface
water body and water level changes (which could be from satellite-based altimeter data),
and thus the water balance of the water body;

3. As a third step, the quality and frequency of this water level data is altered to assess how
this influences the performance of the calibrated model.

Satellite altimeter data can be utilized directly in the calibration procedure when the reservoir
operations can accurately be simulated by the hydrological model. Often this may not be the case,
for example because the reservoir operation rules are complex and based on downstream water
demand in a large catchment.

For the second and third step of this analysis, the water balance of the water body (in this case
an artificial reservoir) needs to be assessed. The unknown variable of the water balance is the
reservoir inflow, which can be estimates with the following equation:

Qin = Quut + Avol — ET

With Q;,, the reservoir inflow (m?3 day-'), Q,.: the reservoir outflow (m3 day-'; observed), Avol the
change in reservoir storage (m?3 day'; observed from altimeter data) and ET the open water
evaporation (m?3 day-'; simulated).

In this equation, the change in reservoir storage is obtained from the satellite altimeter data and
a relationship between reservoir water level and reservoir volume.

Reservoir water level and outflow timeseries were obtained from the local water authority
(Confederacion Hidrografica del Segura) and open-water evaporation was determined with the
Hargreaves equation from the SPHY model. Changes in reservoir volume were obtained from a
fitted power-law relationship between the observed reservoir level and volume, see Figure 10.
We have fitted the following power law function to the data to determine the reservoir volume from
water level:

RESlevel - C)%

RESvol = ( a

Where RES,,, is the reservoir volume (m?3 day'), RES,...; is the water level in the reservoir (m
amsl), and a, b and c are parameters. The power law equation was fitted to the observed data
and we obtained the following values for the three parameters: a = 0.054757, b = 0.40285, ¢ =
864.06.
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Figure 10. Power-law relationship between reservoir volume (Hm?) and reservoir water
level (m amsl).

The open water evaporation can be obtained from the following equation:
ET = kcopen—waterETref

With kcopen-water the crop coefficient for open water, which can be assumed at 1.2 (Allen et al.,
1998), and ET,.f the reference evapotranspiration, which can be obtained from the Hargreaves
equation (G.H. Hargreaves and Z.A. Samani, 1985).

For the third step in the analysis, we test the sensitivity of the model performance for
- revisit frequency (i.e. 1 day, 2 days, 7 days, 1 month) and
- measurement error (i.e. 25%, 50%, 100%, 200%) of the altimeter data.

The model is applied on a cell-by-cell basis, with a fixed resolution of 200 m and a daily time step.
The SPHY model simulates most relevant hydrological processes, i.e. interception,
evapotranspiration, surface runoff, and lateral and vertical soil moisture flow. We use the
SPOTPY python library (Houska et al., 2015) to calibrate the model, using the Simulated
Annealing algorithm with 500 iterations and the Nash-Sutcliffe model efficiency (Nash and
Sutcliffe, 1970).

We optimize two model parameters, i.e. a routing parameter (kx) and a model parameter that
affects surface runoff (alpha), which both affect the discharge hydrograph. All calibration results
are compared with a set of model performance indicators, that include daily and monthly Nash-
Sutcliffe model efficiency, percent bias (PBIAS) and Normalized Root-Mean-Square Error
(NRMSE).

3.22 Study area

The study was performed in the headwaters of the Segura River catchment in SE Spain (Figure
11). The first step in the analysis is performed for the Fuensanta catchment. The Fuensanta
catchment covers an area of 1189.7 km? and elevation ranges between 580 and 2040 m amsl.
Upstream of the Fuensanta reservoir there are two other reservoirs: the Anchuricas and La Vieja
reservoirs.
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The second and third step in the analysis is performed for the Anchuricas subcatchment. The
Anchuricas reservoir was constructed in 1955, with the function to generate hydropower. The
reservoir has a capacity of 6 Hm3. The Anchuricas subcatchment covers an area of 234.3 km?
and elevation ranges between 900 and 1920 m amsl. The landuse in the Anchuricas
subcatchment is dominated by natural vegetation, i.e. forest (67.5%) and shrubland (29.2%).
Cropland only covers 3% of the surface area.
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Figure 11. The study area, with (a) the location of the study area in Spain, (b) the
delineation of the subcatchment, the location of the rivers and reservoirs, (c) the digital
elevation model, and (d) the landuse.

3.2.3 Data

An overview of the datasets that were used for the SPHY model is summarized in Table 4. All
spatial data were prepared at a 200 m resolution.

Table 4. Input data for the SPHY model

Dataset Detail, resolution, scale Source
Digital Elevation Model 30 m resolution Shuttle Radar Topography
Mission (NASA)
SoilGrids 250 m resolution ISRIC
Precipitation Daily 2000-2010, 5 km SPREAD (Serrano-Notivoli et
resolution al., 2017)
Temperature Daily 2000-2010, 10 km SPAINO2 (Herrera et al.,
resolution 2016)
NDVI 16-day temporal resolution, MODIS (MOD13Q1v6)
250 m resolution
Landuse 1:50 000 Mapa de Cultivos y
Aprovechamientos de
Espana 2000-2010
(MAPAMA, 2010)
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Reservoir timeseries (inflow, | Daily 2000-2010 at Confederacion Hidrografica
outflow, volume and level) Anchuricas and Fuensanta del Segura
reservoir

Digital elevation data were obtained from the Shuttle Radar Data Topography Mission (SRTM) of
the NASA’s Space Shuttle Endeavour flight on 11-22 February 2000 (Farr et al., 2007). Texture
(sand, clay, silt) and soil organic matter data were obtained from the SoilGrids database (Hengl
et al., 2017) at 250 m resolution. Pedotransfer functions (Saxton and Rawls, 2006) were applied
to prepare the soil hydraulic properties maps used in the SPHY model.

Daily meteorological data were obtained from the SPREAD dataset (precipitation) (Serrano-
Notivoli et al., 2017) with a 5 km resolution and from the SPAINO2 dataset (temperature) (Herrera
et al., 2016) with a 10 km resolution. In the SPHY model, NDVI is used to determine actual
evapotranspiration, interception and canopy storage.

NDVI data were obtained from the MODIS database (Didan, 2015). We used each of the
individual NDVI images, after gap-filling (mainly due to cloud cover) with the long-term average
16-day period NDVI for the period 2000-2010. More details on the approach can be found in
Hunink et al. (2016). A local landuse map was used as input for the SPHY model, which
distinguishes 14 landuse classes in the study area (MAPAMA, 2010).

Daily reservoir data were obtained from the Anchuricas and Fuensanta reservoirs from the local
water authority (Confederacion Hidrografica del Segura). These data included reservoir inflow,
outflow, water level and volume.

3.3 Results

3.3.1  Water balance calibration

The water balance calibration was performed in the Fuensanta catchment, i.e. the entire study
area as shown in Figure 11 (a). The average annual reservoir inflow, measured by the local water
authority (Confederacion Hidrografica del Segura), was compared to the total runoff from the
SPHY model. The water balance calibration mainly focused on the soil hydraulic properties. We
applied a multiplication factor to the saturated hydraulic conductivity (1.25) and field capacity
maps (1.35), which resulted in a percent bias (PBIAS) of -0.24 (Table 5).

Table 5. Water balance, individual runoff components and model efficiency of the water
balance calibration
Water balance (mm)

Precipitation 737.71
Interception 129.14
Actual ET 441.14
Total runoff 147.94

Individual runoff components (mm)
Snow runoff 99.58
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Surface runoff 3.97

Rootzone drainange 32.2
Baseflow 12.2

Observed runoff (mm) | 148.29
PBIAS -0.23658

3.3.2 Calibration with reservoir inflow data

Next, we calibrated the model with daily reservoir inflow data from the Fuensanta reservoir. In the
Fuensanta catchment, daily discharge is affected by reservoir operations from 2 reservoirs, i.e.
the Anchuricas reservoir and the La Vieja reservoir. The SPHY model is equipped with a simple
reservoir module that includes 1 calibration parameter (i.e. Kr). Apart from parameters kx and
alpha, we also included the K: parameters from both reservoirs in the calibration procedure.

We optimized the routing parameter kx to a value of 0.964, alpha to a value of 0.1721 and Kr to
0.06232 (Anchuricas) and 0.00407 (La Vieja). At the Fuensanta reservoir, this resulted in a Nash-
Sutcliffe model efficiency (NSE) of 0.45 for daily discharge, a NSE of 0.67 for monthly discharge,
a PBIAS of -7.30 and a normalized RMSE (NRMSE) of 73.90. Figure 12 shows the resulting
observed and simulated timeseries of reservoir inflow at the Fuensanta reservoir.
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Figure 12. Reservoir inflow timeseries at the Fuensanta reservoir of the observations
(grey) and simulations (blue) after reservoir inflow calibration

The obtained parameter set was applied to the Anchuricas catchment, where reservoir parameter
Kr does not affect the model results. At the Anchuricas reservoir, this resulted in a NSE of 0.23
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for daily discharge, a NSE of 0.36 for monthly discharge, a PBIAS of -26.40 and a NRMSE of
87.50. Figure 13 shows the resulting observed and simulated timeseries of reservoir inflow at the
Anchuricas reservoir. The figure clearly shows that low flows in the Anchuricas cathcment are
poorly simulated when the model is optimized at the Fuensanta reservoir.
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Figure 13. Reservoir inflow timeseries at the Anchuricas reservoir of the observations
(grey) and simulations (blue) after reservoir inflow calibration

3.3.3 Calibration with altimeter data

As stated before, we determined reservoir inflow at the Anchuricas reservoir from observed
reservoir outflow and water level and simulated open-water evaporation. The derived reservoir
inflow time series is subsequently used to calibrate the model.

We first calibrated the model with the highest temporal resolution (i.e. 1-day frequency) and
without error (i.e. 0%). We optimized the routing parameter kx to a value of 0.987 and alpha to a
value of 0.999, which resulted in a NSE of 0.43 for daily discharge, a NSE of 0.71 for monthly
discharge, a PBIAS of -2.70 and a NRMSE of 75.50. Figure 14 shows the resulting simulated
timeseries of reservoir inflow at the Anchuricas reservoir from the calibration with reservoir inflow
data from altimeter data. These results show that calibration with altimeter data has improved the
model performance as compared to calibration with data from the downstream Fuensanta
reservoir only (Table 6).

SPHY is able to accurately simulate the monthly discharge of the Anchuricas catchment, while
daily fluctuations are not fully captured by the model. This may be caused by inaccuracies of the
observations or by processes that are not well captured by the SPHY model. Hence, these model
and observation uncertainties should be considered when evaluating the results below.
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Figure 14. Reservoir inflow timeseries at the Anchuricas reservoir of the observations
(grey), simulations based on inflow data (blue) and simulations based on altimeter data
(red)

Table 6. Model parameters and model performance of the calibration with inflow data and
altimeter data in the Anchuricas and Fuensanta catchments

Model parameters Model performance

kx Alpha NSE daily | NSE monthly | PBIAS | NRMSE
Inflow 0.964 | 0.1721 0.45 0.67 -7.30 | 73.90
(Fuensanta)
Inflow 0.964 | 0.1721 0.23 0.36 -26.40 | 87.50
(Anchuricas)
Altimeter 0.987 | 0.999 0.43 0.71 -2.70 | 75.50
(Anchuricas)

3.3.4 Impact of revisit frequency

The revisit frequency may be an important variable when considering satellite data. Therefore,
we varied the revisit frequency and assessed the sensitivity of the revisit frequency to the model
results. We used the same approach as discussed before, but here we neglected part of the
reservoir inflow timeseries, depending on the revisit frequency. We have tested this with the
following frequencies: 2 days, 1 week and 1 month.

The results (Figure 15 and Table 7) show that the revisit frequency does not substantially
influence the simulated hydrologic response of the model. The flow dynamics obtained are similar,
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which leads finally to similar estimates of water resources availability. It is important to note, that
the model captures the monthly dynamics rather good which is essential for water resources
assessments; however, the daily dynamics are poorly represented by the model. This is due to a
combination of data limitations of the soil, landcover and meteorological data, next to also
limitations in the model structure itself. For this reason, even with a monthly frequency, the model
still performs as reasonably well as in the reference simulation.
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Figure 15. Reservoir inflow timeseries at the Anchuricas reservoir of the observations

(grey), simulations based on 1 day frequency (red dashed) and simulations based on

variation of revisit frequency (blue)

Table 7. Model parameters and model performance of the calibration with altimeter data
with variation in revisit frequency for the Anchuricas reservoir.

Model parameters Model performance
dt (days) | kx Alpha NSE daily | NSE monthly | PBIAS | NRMSE
1 0.987 0.999 0.43 0.71 -2.70 | 75.50
0.9834 | 0.999 0.43 0.69 -2.20 | 75.70
7 0.9844 | 0.7534 | 0.42 0.69 -11.00 | 76.00
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30 0.988 0.999 0.43 0.71 -290 | 75.70

3.3.5 Impact of measurement error

Satellite altimeter data are most likely subject to a measurement error. Similar to the assessment
of the impact of revisit frequency, we assessed here the sensitivity of the error to the model
results. We considered 4 different errors, i.e. 25%, 50%, 100% and 200%. The errors are a
percentage of the standard deviation of the reservoir water level timeseries and correspond,
respectively, to an error of 0.46 m, 0.91 m, 1.82 m and 3.65 m. Subsequently, the errors are
added as gaussian noise to the reservoir inflow timeseries.

The results (Figure 16 and Table 8) show that measurement error does not substantially affect
the model performance up to an error of 100%. With an error of 200%, the model performance
decreases. With an error of 200%, the model overestimates the discharge peaks and
underestimates the low flow periods.

The fact that model performance is unaffected by measurement error up to 100% may be due to
a similar effect as with the revisit frequency. The model is not able to simulate the high frequency
variation at daily scale. The addition of an error to the data has a similar effect on the timeseries
that are used to calibrate the model, i.e. high frequency fluctuations are added to the timeseries.
However, the running average is unaffected by these small fluctuations. The running average is
well simulated by the model (as shown by a high NSE for monthly time steps), so the model
performs equally well at monthly time steps.
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Figure 16. Reservoir inflow timeseries at the Anchuricas reservoir of the observations

(grey), simulations without error (0%; red dashed) and simulations variation in
measurement error (blue)

Table 8. Model parameters and model performance of the calibration with altimeter data
with variation in measurement error

Model parameters Model performance
error (%) kx Alpha NSE daily NSE monthly PBIAS | NRMSE
0 0.987 0.999 0.43 0.71 -2.70 | 75.50
25 0.9893 0.938 0.41 0.69 -5.20 | 76.50
e s




50 0.987 0.987 0.43 0.71 -3.10 | 75.50

100 0.9854 0.982 0.43 0.70 -3.00 | 75.40

200 0.9673 0.999 0.27 0.39 -1.10 | 85.70
3.3.6 Impact of revisit frequency and measurement error

We also assessed the impact of both the revisit frequency and measurement error on the model
performance. In the subsequent calibration runs, we set the revisit frequency to 1 month and

varied the error as shown in the previous section, i.e. 25%, 50%, 100% and 200% error.

In contrast to the results of the previous section, the model performance significantly reduces
when considering a revisit frequency of 1 month and variations in measurement error. While the
model still performed reasonably well with an error of 100% and a revisit frequency of 1 day, here
error of 50% already shows a decrease of NSE and other model performance indicators. The

NSE even becomes negative with an error of 100% and higher (both daily and monthly).

32




4e+06 -

3e+06 1

2e+06

1e+06 -

0e+00

1018 %67

3

JoL8 %06

4e+06 -

3e+06 -

reservoir inflow (m3/day

2e+06

1e+06

0e+00 1

10118 %001

4e+06

3e+06

2e+06

1e+06 -

0e+00 1

Jows %002

Figure 17. Reservoir inflow timeseries at the Anchuricas reservoir of the observations

(grey), simulations without error (0%; red dashed) and simulations variation in

measurement error (blue), with a revisit frequency of 1 month

Table 9. Model parameters and model performance of the calibration with altimeter data
with variation in measurement error with a revisit frequency of 1 month

Model parameters Model performance
error (%) kx Alpha NSE daily NSE monthly PBIAS | NRMSE
0 0.988 0.999 0.43 0.71 -2.90 75.70
25 0.9854 0.641 0.41 0.67 -15.40 | 76.80
e -




50 0.979 0.905 0.40 0.63 -5.00 77.50
100 0.9326 0.999 -0.17 -0.15 -0.10 108.20
200 0.871 0.999 -0.89 -0.56 0.20 137.30

3.4 Discussion

In this case study, we tested the feasibility of the use of satellite altimeter data to calibrate
hydrological models, and specifically how the frequency and data accuracy of the altimeter data
affect model results. A prerequisite of utilizing satellite altimeter data for calibrating hydrological
models is that a discharge station is available downstream of the water body where the altimeter
data are obtained. These discharge data are needed to assess the water balance of the water
body. However, even if no streamflow station is installed, useful reservoir outflow data can
sometimes be derived from data on hydropower generation, in case the reservoir is used for this
purpose (Hunink et al., 2017b).

Using altimeter data to support model calibration resulted in significantly better prediction
accuracy for the Anchuricas reservoir as compared to a situation where the model was calibrated
with discharge from the downstream Fuensanta reservoir (Table 3). The model is able to
accurately simulate the monthly discharge of the Anchuricas catchment, while daily fluctuations
are not fully captured by the model due to data and model limitations. For water resources
assessments, monthly timesteps are often sufficient.

The analysis showed that the revisit frequency does not substantially affect the model
performance, with respect to the calibration run with a 1-day frequency. This may be caused by
the fact that the model performs well simulating the monthly variation in discharge, but high
frequency variation is not well captured. The model performance is unaffected by measurement
error up to 100% of the standard deviation, which may be due to a similar effect as with the revisit
frequency. The model is not able to simulate the high frequency variation at daily scale. The
addition of an error on the data has a similar effect on the timeseries that are used to calibrate
the model, i.e. high frequency fluctuations are added to the timeseries. However, the running
average is unaffected by these small fluctuations. The running average is well simulated by the
model (as shown by a high NSE for monthly time steps), so the model performs equally well at
monthly time steps.

The model performance reduces significantly when considering a revisit frequency of 1 month
and variations in measurement error. While the model still performed reasonably well with an
error of 100% and a revisit frequency of 1 day, at a 1 month revisit frequency an error of 50%
already shows a strong decrease of NSE and other model performance indicators. The NSE even
becomes negative with an error of 100% and higher (both daily and monthly).
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4 Take-home messages

From the work presented here and based on literature review, the following key considerations
are proposed for shaping a low-cost altimetry mission useful for assessing inland water bodies
and water resources planning:

Altimetry information can be extremely useful for complex systems as for example
swamps, where data on surface water levels and flows are scarce, as often the case in
developing countries. Altimetry data can support the management and conservation of
these systems that provide key ecosystem services for people and the environment.

To build hydrological models for water resources assessments, historic data is required
to calibrate and validate the tools. To capture the variability in water resources systems
and thus perform a successful validation, a period of around 10 years of altimetry data is
recommendable.

A revisit frequency of 1 month is typically sufficient for water resources assessments.
Higher frequencies are normally not necessary as they may only lead to minor
improvements in the performance of the modeling tools. Lower frequencies (e.g. two
months) are not sufficient to capture the seasonal pattern adequately.

The required accuracy is highly dependent on the characteristics of the water body and
is a function principally of the annual dynamics in storage, and the depth-storage
relationship. In case study I, with a very large but shallow water body, an accuracy of
approx. 10 cm was considered necessary. For case study Il, with a smaller and deeper
water body, it was found that up to an error of 180 cm the performance of the model was
not significantly affected.

The accuracy requirement can possibly also be expressed as a percentage of the annual
variability in water levels, of a particular water body of interest. For example:

o In case study I, annual increases of approximately 1 m are common. The
accuracy requirement is approximately 10% of this (10 cm)

o Incase study Il, water level increases or decreases within a year of around 15 m
are possible. Also here, the accuracy requirement is in the order of 10-15% of
this annual variability.

Finally it has to be noted, that the usefulness of the altimetry data is also dependent on
the availability and quality of other datasets necessary for the hydrological modeling.
These datasets are primarily the depth-volume relationship, ideally from in-situ
measurements but possibly extracted from satellite data (Duan and Bastiaanssen,
2013b); as well as discharge data upstream or downstream of the water body. Without
these data sources it is not possible to establish a reliable water balance of the water
body.
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