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Many studies suggest that high-density rain gauge networks are required to capture the rainfall heterogeneities
necessary to accurately describe the components of the hydrological cycle. However, equipping and maintaining
a high-density rain gauge network will also involve high costs. Although many studies provided useful insights

Keywords: on the required accuracy of rainfall estimates to accurately describe the components of the hydrological cycle,
X-band radar most of these studies focused on streamflow simulations, large river basins or urban environments. The objective
SPHY

of this study is therefore to evaluate the impact of uncertainties in areal rainfall, estimated at several spatial
resolutions, on hydrological simulations of a small ~6.5 km? rural lowland catchment. The approach followed in
this study is to force a calibrated spatially-distributed hydrological model (SPHY) with rainfall retrieved from an
X-band radar and various synthetic rainfall products, calculated using bootstrap samples of a varying number of
radar pixels, treated as virtual rain gauge locations within the catchment. This enables us to determine the most
appropriate resolution of rainfall data to accurately describe the hydrology of a small rural lowland catchment.
We found that the use of one rain gauge to estimate the catchment’s areal rainfall may lead to a potential error of
more than six times the average hourly rainfall. This may lead to uncertainties in simulated discharge that
approach 60% of the average hourly discharge. More than 40 rain gauges are required to reduce the potential
error in areal rainfall estimation to values < 0.1 mmh ™. The associated uncertainty in discharge simulations is
20% if 10 rain gauges are used, and 10% if 40 rain gauges are used. The simulation of soil moisture contents and
evapotranspiration rates are hardly affected by the number of rain gauges used to estimate the areal rainfall,
which is due to the high saturated hydraulic conductivities of the top-soil. At least 12 gauges per km? are re-
quired to capture the spatial rainfall variation that is present in radar rainfall estimates. Analysis of an individual
18-h rainfall event revealed that the uncertainty in peak areal rainfall estimated using one rain gauge may range
between —100% and 600%. The associated uncertainty in simulated discharge for this event ranges between
—67 and 233%. With 25 rain gauges the uncertainty in simulated discharge is still in the range of —17 to 33%.

Spatial resolutions
Hydrological simulations
Uncertainty

Hupsel Brook catchment

1. Introduction

It is well-known that rainfall is a highly heterogeneous process
covering an extensive range of scales in time and space (Marani, 2005;
Nicétina, 2008). Despite the fact that accurate estimates of rainfall in
terms of location and intensity are crucial for operational water man-
agement, as well as for the hydrological research community (Van de
Beek et al., 2010), hydrologists have traditionally put more effort in the
development of evermore sophisticated rainfall-runoff modeling ap-
proaches than in the development of improved techniques for the
measurement and prediction of the space-time variability of rainfall

(Berne et al., 2005). However, during the last few years substantial
effort has been put in modeling high-resolution rainfall in both space
and time (Paschalis et al., 2013; Nerini et al., 2017; Peleg et al., 2017).

Traditionally, the rain gauge has been the most common instrument
to measure rainfall (Sohn et al., 2010; Van de Beek et al., 2010; Van de
Beek et al., 2012). A disadvantage of a rain gauge is that it only pro-
vides point measurements and therefore lacks information on the spa-
tial variability (Van de Beek et al., 2010), unless used in a network of
rain gauges with a sufficient density. Lebel et al. (1987) showed that if
rainfall measurements are based on ground measurements only, their
accuracy depends on the spatial variability of the rainfall process and
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the density of the rain gauge network. For short timescales (up to
15min) and regions that are characterized by frequent low rainfall
rates, the spatial rainfall correlations are likely to be corrupted by
measurement uncertainties (Villarini et al., 2008). Peleg et al. (2013)
found that at least three rain stations are needed to adequately re-
present the rainfall on a typical radar pixel scale. Berne et al. (2005)
concluded that the uncertainty in hourly discharge simulations asso-
ciated with the sampling uncertainty of the mean areal rainfall esti-
mated over a ~1600 km? catchment from 10 rain gauges was + 25%,
being of the same order of magnitude as that associated with the model
variables describing the initial state of the model. Faures et al. (1995)
concluded that the use of a single rain gauge can lead to large un-
certainties in runoff estimations for a small-scale (4.4 ha) semi-arid
catchment, dominated by convective rainfall. This suggests that high-
density rain gauge networks are required to capture the rainfall het-
erogeneities necessary to accurately describe the components of the
hydrological cycle (Lobligeois et al., 2014). However, equipping and
maintaining a high-density rain gauge network will also involve high
costs (Pardo-Igtizquiza, 1998). In order to be more cost-effective, water
managers would therefore benefit from information indicating the
number of rain gauges, their spatial distribution, and measuring in-
terval required to accurately describe the hydrological processes in
their management area.

Other techniques to measure rainfall include the use of weather
radar (Berne et al., 2005; Berne et al., 2004; Van de Beek et al., 2012),
disdrometers (Joss and Waldvogel, 1969) and microwave links (Leijnse
et al., 2007a,b; Overeem et al., 2013). All these instruments have their
pros and cons when it comes to measuring rainfall. Compared to the use
of a single rain gauge, weather radar is capable of capturing the spatial
variability of rainfall over larger areas (Van de Beek et al., 2012; Van de
Beek et al., 2010), although it is well-known that data obtained from
weather radars are affected by multiple sources of error (Hazenberg
et al., 2011; Villarini and Krajewski, 2010). Weather radar and rain
gauges are complementary to each other and are therefore often com-
bined to generate bias-corrected weather radar images (Hazenberg
et al., 2011; Rabiei and Haberlandt, 2015). The potential of weather
radar retrieved rainfall for hydrological applications has been in-
vestigated in several studies (e.g. Berne et al., 2005; Van de Beek et al.,
2010; Ochoa-Rodriguez et al., 2015; Paschalis et al., 2014). Berne et al.
(2005) investigated the potential of a C-band doppler weather radar for
hydrological applications in the Ourthe catchment (~1600 km?), Bel-
gium. Forcing the lumped HBV model with the radar-estimated mean
areal rainfall, they found a significant underestimation with respect to
the observed discharge. Hazenberg et al. (2011) corrected the same C-
band doppler weather radar for errors related to attenuation, ground
clutter, anomalous propagation, the vertical profile of reflectivity, and
advection, and demonstrated the potential of applying weather radar
information as input to the HBV model, without using any rain gauge
information. Van de Beek et al. (2010) evaluated the performance of
high-resolution X-band radar for rainfall measurement in The Nether-
lands, and found that X-band radar is able to measure the space-time
variation of rainfall at high resolution, far greater than what can be
achieved by rain gauge networks.

It is clear that a key question to be answered is: “what is the ac-
curacy of rainfall measurements that is required to accurately describe
the components of the hydrological cycle” (Bell et al., 2000; Nicétina,
2008)?. According to the studies above this issue is dominated by the
spatial resolution of the rainfall product used. Others (Brauer et al.,
2016; Krajewski et al., 1991; Wilson et al., 1979), however, have con-
cluded that the temporal rather than the spatial variability plays a
primary role in the hydrologic response, with Brauer et al. (2016) and
Krajewski et al. (1991) focusing on small catchments (<7.5 km?). Huza
et al. (2014) highlights the strong relation between the occurrence of
flash floods and initial soil moisture conditions. Other studies (Van de
Beek et al., 2012; Berne et al., 2004; Berndtsson and Niemczynowicz,
1988; Ogden et al., 1997; Ochoa-Rodriguez et al., 2015; Rafieeinasab
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et al., 2015; Yang et al., 2016) found that rainfall measurements with
high spatial and temporal resolutions are especially required for urban
environments with fast response times. Nic6tina (2008) analyzed the
influence of rainfall variability on the hydrologic response as a function
of characteristic spatial scales of rainfall events, water transport pro-
cesses in hillslopes and the channel network, runoff generation me-
chanisms, and basin scale, and concluded that the spatial variability of
rainfall does not significantly influence the flood response for basin
areas up to 3,500 km?. Bell et al. (2000) evaluated the sensitivity of a
lumped and a distributed rainfall-runoff model to rainfall estimates at a
variety of resolutions, focusing on both stratiform and convective
events. They found that a distributed model using rain gauge data as
input is sensitive to the location of rain gauges within the catchment,
and therefore to the spatial variability of rainfall over the catchment,
with a stronger sensitivity for convective rainfall. However, they did
not relate the required resolution of rainfall data to the spatial resolu-
tion of the rainfall-runoff models used.

Although these studies provided useful insights on the accuracy of
rainfall measurements that is required at different spatial and temporal
resolutions to be able to accurately describe the components of the
hydrological cycle, most of them focused on streamflow only. Besides
streamflow, other components of the hydrological cycle, such as soil
moisture content and evapotranspiration are relevant as well for e.g.
agriculture. The majority of studies above focused on river basins in the
order of 100-1,000 km? (Lebel et al., 1987; Nicétina, 2008; Bell et al.,
2000; Berne et al., 2005), while another substantial number of studies
(Van de Beek et al., 2012; Berne et al., 2004; Berndtsson and
Niemczynowicz, 1988; Ogden et al., 1997) focused on urban environ-
ments with fast response times. We feel that the spatial resolution re-
quired for areal rainfall estimation to accurately describe the hydro-
logical processes in small (<10 km?) rural lowland (slightly sloping and
freely draining (Brauer et al., 2014)) catchments requires additional
attention. The objective of this study is therefore to evaluate the impact
of areal rainfall, estimated at several spatial resolutions, on hydro-
logical simulations of a small rural lowland catchment.

The approach followed in this study is to force a spatially-dis-
tributed hydrological model with rainfall retrieved from an X-band
radar (Van de Beek et al., 2010; Sassi et al., 2014) and various synthetic
rainfall products, calculated using bootstrap samples of a varying
number of radar pixels, treated as virtual rain gauge locations within
the catchment. This enables us to determine the most appropriate re-
solution of rainfall data to accurately describe the hydrology of a small
rural lowland catchment. The Royal Netherlands Meteorological In-
stitute (KNMI) operates two C-band Doppler radars (Overeem et al.,
2009), each providing rainfall images at a 1-km spatial and 5-min
temporal resolutions. Given the course resolution of the C-band radar
data (1km) with respect to the catchment size (6.5km?), we have
chosen to use X-band radar data from a different location rather than C-
band radar data at the location of the catchment because of their higher
space time resolution available. Also, disaggregating C-band radar to
higher resolutions means we need to make assumptions about the
small-scale rainfall variability, which are very uncertain and are not
needed in our case with X-band radar. Another advantage of using X-
band radar is that it allows for the detection of convective rainfall
events. The used X-band radar provides a higher spatial (120 m range;
1.875 degrees in azimuth) and temporal (16 s) resolution than the C-
band radar operated by the KNMI. The Hupsel Brook catchment (Sec-
tion 2.1) was selected as case-study catchment for this study. This
catchment was also used by Brauer et al. (2016) to analyze the effect of
differences between rainfall measurement techniques on groundwater
and discharge simulations, and by Brauer et al. (2011) to study the
hydrological response of this catchment for an extraordinary rainfall
event. During 24 h on the 26th of August 2010, nearly 160 mm of rain
was recorded by the meteorological station in the Hupsel Brook
catchment, which is operated by the KNMI. This extraordinary rainfall
event, with an estimated return period of more than 1000 years, caused
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Fig. 1. Left: the Hupsel Brook catchment in the east of the Netherlands including its discharge and meteorological stations (tertiary channels and drains are not
shown). Right: the gridded model outline of the Hupsel Brook catchment at a 250 m spatial resolution. Each grid cell has a drainage direction (derived from the
Digital Elevation Model (DEM)), which is represented by the black lines, and is therefore part of the channel network. Delineating channel networks in lowland
catchments based on a DEM is often a constraint, which explains why the delineated channel network is not a perfect match with reality.
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Fig. 2. Left: Example of an aggregated hourly X-band radar image with rain intensity in mmh~! and range resolution of 120 m. Right: Example of an aggregated
hourly X-band radar image with rain intensity in mmh ™" at a 250 m resolution square grid. The Hupsel Brook catchment rainfall data is extracted from the black
rectangle. White areas represent radar clutter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

inundation of several plots in the area. Within seven hours the dis-
charge increased from 5 X 1072 to almost 4.5m3s™! (Brauer et al.,
2011). The study by Brauer et al. (2011) underlines the importance of
having high-quality rainfall data, which justifies the context of the
current study; if high quality rainfall data would have been available,
then timely measures could have been taken to reduce the risk of
flooding and minimize damage. Additionally, such extraordinary rain-
fall events help us to better understand the hydrological processes in-
volved.

This paper is organized as follows: Section 2 describes the study area
and the X-band radar data used to derive the synthetic rainfall products.
Section 3 describes the methodology used to remove residual clutter,
obtain the synthetic rainfall products, and the set-up of the spatially
distributed hydrological model. The results are presented in Section 4
and discussed in Section 5. The conclusions are given in Section 6.

2. Data
2.1. Hupsel Brook Catchment

The Hupsel Brook catchment is a small (6.5 km?) lowland catchment

located in the east of the Netherlands (Fig. 1). The Hupsel Brook is a
naturally drained catchment, but since 1960 drain pipes and culverts
have been constructed (Warmerdam, 1979). These drains have been
constructed in 50% of the plots and cause, together with the dense
network of ditches, a fast discharge response when the catchment is
close to saturation (van der Velde et al., 2009). Land use in the catch-
ment consists of grass (59%), agriculture (33%), forest (3%), and urban
areas (5%) (Brauer et al., 2011). Elevation within the catchment varies
from 22 m.a.s.l. in the west to 35m.a.s.l. in the southeast. The mean

Table 1

Optimized SPHY model parameters obtained through calibration for the period
2001-2009. Ky is not a model parameter, but a factor used to optimize the
spatial K, values for the root- and subzone layer.

Acronym  Description Calibrated value  Units
Sgw groundwater recharge delay time 160 h

kx flow recession coefficient 0.75 -
GWiafrae  saturated fraction of groundwater layer ~ 0.10 3m~3
Ksatfact Kgq factor 1.5 -
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based on the hydrological year May 1993 — April 1994. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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slope of the catchment is 0.8%, while the brook itself has a mean slope
of 0.2% (van der Velde et al., 2009). The brook, with a length of approx.
4km, has 7 smaller tributaries with lengths between 300 to 1500 m
(Warmerdam, 1979). The soil in this catchment consists of loamy sand
with some clay, peat and gravel in the topsoil, which is situated on top
of an impermeable marine clay layer of more than 20 m thick (Brauer
et al., 2011). The clay layer is located at a depth that varies between
1.5m in the southeast to 12m in the west.

These (geo) hydrological properties are the main reason why this
catchment was selected for this study: the impermeable clay layer al-
lows for a accurately delineated watershed with almost zero flow at the
boundaries. This results in a catchment with one aquifer that directly
discharges to the brook, and makes it therefore very suitable for hy-
drological studies, which have been carried out extensively in this
catchment since 1963 (Brauer et al., 2011; van der Velde et al., 2009;
Rozemeijer et al., 2010; Puente et al., 1993; Hopmans and Stricker,
1989; Stricker and Brutsaert, 1978). We refer to these studies for more
information about this catchment.

2.2. X-band radar

The rain data gathered for the purpose of this study was obtained
from an X-band FM-CW (Frequency Modulated — Continuous Wave)
Solid-State Weather Surveillance Radar, known as SOLIDAR. This radar
was installed on the roof of the Electrical Engineering building of Delft
University of Technology (Ligthart and Nieuwkerk, 1990), and col-
lected data during a six-year period, from January 1991 through August
1997 (Uijlenhoet et al., 1997). Data from this radar has been used in
several studies (Sassi et al., 2014; Van de Beek et al., 2010; Leijnse
et al., 2008). After the processing reported by Ligthart and Nieuwkerk
(1990), the range resolution of the radar data is 120 m, the angular
resolution is 1.875 degrees, and the temporal resolution 16 s, which are
exceptionally fine for a rainfall radar. For this study we focus on the
hydrological year May 1993 through April 1994, which is the same
period that was used by Van de Beek et al. (2010) and Sassi et al.
(2014).

3. Methodology
3.1. Aggregation and removal of residual clutter

The radar data have been transposed to the Hupsel Brook catchment
(150 km east of Delft) as if the rainfall measured by this radar would
have occured over the Hupsel Brook catchment. Original radar images
obtained from this radar have the typical “pizza slice” shape as shown
in the left plot of Fig. 2. However, the spatially distributed model used
in this study (see Section 3.4) runs at an hourly time-step and a 250 m
square-grid resolution. Therefore, the original radar images had to be
aggregated from a polar (120 m range resolution, 1.875-degree angular
resolution, 16 s) to a rectangular grid with a 250 m spatial resolution
and hourly temporal resolution. Given the i) ~3-h response time of the
Hupsel Brook catchment (Brauer et al., 2016), ii) the hourly hydro-
logical model resolution, and iii) the small number of radar rainfall
pixels that can be obtained from the KNMI C-band radar (6-7 pixels vs.
106 pixels from aggregated X-band radar), the aggregation to a rec-
tangular grid with a 250 m spatial resolution and hourly temporal re-
solution is a valid approach. The aggregation has been done as part of a
study by Sassi et al. (2014), and an example of this is shown in Fig. 2.

Before the original radar data were aggregated, residual clutter was
removed by determining a threshold for each pixel below which rainfall
intensities were set to zero such that the annual rainfall of each pixel
matches the lowest pixel annual rainfall (551 mm). In order to be more
representative for the Hupsel Brook catchment, each pixel was subse-
quently scaled to match the 10-year (2000-2009) average annual
rainfall over the Hupsel Brook catchment. The 10-year average annual
rainfall is 801 mm according to the meteorological station located
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Table 2

Water balance with rainfall (R), discharge (Q), potential evapo-
transpiration (ET,), actual evapotranspiration (ET;), and change in sto-
rage (AS), as simulated by the SPHY model using radar rainfall as for-
cing. Water balance terms are calculated for the hydrological year May
1993 - April 1994.

Flux mm mm d~!
R 789 2.16

Q 394 1.08
ET, 573 1.60
ET, 430 1.18

AS —34

inside the catchment (Fig. 1). The scaling was achieved by multiplying
the time series for each pixel with a constant factor. Hourly rainfall
sums below 0.1 mm only account for 2% of the annual Hupsel Brook
rainfall and are therefore classified as “drizzle” and set to zero after
scaling was performed. After this step a rainfall map-series (1 May
1993-30 April 1994) for the Hupsel Brook catchment was created by
extracting the gridded model outline (106 pixels, 13 rows, 16 columns;
see right plot Fig. 1) from the aggregated radar rainfall images.

3.2. Synthetic rainfall products: bootstrapping

With a synthetic rainfall product we refer to a number of virtual rain
gauges randomly distributed within the Hupsel Brook catchment,
where the virtual rain gauge is represented by a pixel from the radar
rainfall product. The Hupsel Brook catchment consists of 106 radar
pixels, which means we can construct a large number of synthetic
rainfall products using 1 to 106 pixels as rain gauges. In order to de-
termine the appropriate resolution of rainfall data to accurately de-
scribe the hydrology of this small rural lowland catchment, boot-
strapping (Efron, 1979; Efron and Tibshirani, 1986) was applied to
generate randomly distributed rain gauge locations for each number of
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Fig. 5. 5th to 95th interpercentile range of difference between estimated basin
average rainfall (R), soil moisture (S), discharge (Q), and evapotranspiration
(ET,), as function of the number of rain gauges (pixels), and the corresponding
values based on radar rainfall. Differences are taken relative with respect to the
average hourly value.
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gauges. For this small catchment we chose the number of bootstrap By forcing a spatially distributed hydrological model with these syn-
samples N to be equal to the number of pixels (106). Bootstrapping was thetic rainfall products, we can evaluate the related uncertainty in the
only needed for 2 to 104 rain gauges (pixels), because for 1 rain gauge hydrological response of this catchment.

and 105 rain gauges exactly 106 possibilities exist. The areal Hupsel
Brook rainfall for each rainfall product is finally calculated through
Inverse Distance Weighted (IDW) interpolation (Eq. (1), Shepard,
1968)) using the number of gauges involved in the random sample:

3.3. Reference evapotranspiration and initial conditions

Because hourly reference evapotranspiration (ET;) data were not

E" . vai available for Rotterdam (nearest KNMI station from the X-band radar)
i=
Vo = nidil for the hydrological year May 1993 — April 1994, we used the 10-year
Zie1 i ) (2000-2009) hourly average Makkink ET, from the meteorological
station in the Hupsel Brook catchment, which is operated by KNMI.
with v, the value to be estimated, n the number of points used to cal- Potential evapotranspiration is then calculated for each hour by mul-
culate the unknown value, v; the known value, and df distances from tiplying the reference evapotranspiration with a crop factor (Kc). Since
data points to the point to be estimated to the power p. The default the uncertainty analyses will be performed for the hydrological year
setting was used for IDW, being a power of two and an infinite search May 1993 - April 1994, and soil moisture conditions are generally at
radius. This approach enables us to evaluate the uncertainty involved in field capacity at the start of the hydrological year, we chose field ca-
estimating the areal rainfall as function of the number of rain gauges. pacity moisture conditions as initial condition for all bootstrap runs.
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taken over the bootstrap samples are shown on the y-axis, while the results obtained using the original radar rainfall fields are shown on the x-axis. Results are shown
from top to bottom for 1, 5, 10, and 20 stations. Units are in mmh ™! for R, Q, and ET,, and in mm for S.
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3.4. SPHY model set-up

3.4.1. Introduction

The simulation model used in this study is Spatial Processes in
HYdrology (Terink et al., 2015), which is a spatially distributed hy-
drological model applied on a cell-by-cell basis. SPHY is based on the
PCRaster dynamic modeling framework (Karssenberg et al., 2010;
Karssenberg, 2002; Karssenberg et al., 2001) and describes the hydro-
logical processes in a conceptual way such that changes in fluxes and
storages can be evaluated over time and space. SPHY was set-up and
calibrated for the Hupsel Brook catchment using the KNMI rain gauge
data as input for precipitation. The gridded outline (106 pixels) of the
SPHY model for the Hupsel Brook catchment is shown in the right plot
of Fig. 1. For more details regarding the SPHY model we refer to Terink
et al. (2015).

3.4.2. Input

As static input SPHY requires a Digital Elevation Model (DEM), land
use and soil characteristics, where the latter need to be defined for the
rootzone, subzone, and groundwater layer. The DEM was obtained from
the AHN-2 (AHN, 2015) (Actueel Hoogtebestand Nederland, 5-m hor-
izontal resolution) and was interpolated to the 250-m model resolution.
Land use was obtained from LGN-5 (Hazeu, 2005) (Landelijk Grond-
gebruik Nederland). The soils in the Hupsel Brook catchment have been
classified according to the PAWN-classification (Policy Analysis for the
Watermanagement of the Netherlands) (Wdsten et al., 1988), using the
1:50,000 soil map (v6.0) of The Netherlands. This soil map with a pixel
size of 10 ha has been rasterized to the model’s spatial resolution of
250 m. Except for the saturated hydraulic conductivity (K, [mmh™ m,
the soil physical properties required for the SPHY model were derived
using pedo-transfer functions (Nemes et al., 1999). Detailed maps (5-m
resolution) of the Hupsel Brook catchment, containing the saturated
hydraulic conductivity and clay layer depth, were obtained from soil
samples gathered throughout the years by Wosten et al. (1985). These
maps contain more detail than the 1:50,000 soil map, and were
therefore used to derive a 250-m resolution K, and clay depth map,
using bilinear interpolation. The clay layer is almost impermeable and
its depth varies between 1.5 m in the Southeast to 12 m in the West. We
have assumed this layer to be completely impermeable in the model,
and therefore the three soil layers in the SPHY model represent the soil
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shallow clay layer depth, the total thickness of the three SPHY soil
layers is restricted to 1.5 m for locations where the clay layer resides 1.5
below the surface. SPHY is generally applied using a rootzone thickness
of 0.4 m, meaning that 1.1 m is left for the subzone and groundwater
layer. To guarantee i) the integration of the Hupsel Brook catchment’s
soil hydraulic properties (untill the clay layer) into the three soil layers
of the SPHY model, and ii) maintain representative SPHY model soil
layer depths, we need to scale the thickness of these layers for those
cells where clay depth is >1.5m. This was achieved by fixing the
rootzone layer thickness at the generally applied 0.4 m, while ap-
pointing a minimum thickness of 0.9 m for the subzone and 0.2 m for
the groundwater layer. For pixels where clay is >1.5m below the sur-
face, the layer thicknesses of the subzone and groundwater layer were
scaled using the pixel’s clay depth and the area’s maximum and
minimum clay depth. The meteorological station in the Hupsel Brook
catchment (Fig. 1) provides hourly values for rainfall and ET;, which
were used to force the SPHY model for the period 2000-2009.

4. Results

The results of the model calibration are described in Section 4.1. To
evaluate the impact of the limited sampling of a given number of rain
gauges on the hydrological simulations of a small rural lowland
catchment, we analyzed the hydrological response using radar rainfall
as input (Section 4.2), and compared that simulation to those obtained
using the bootstrapped rainfall fields as input. The uncertainties in-
volved in sampling a given number of rain gauges are analyzed for two
different time frames; the overall uncertainty we may experience during
one year (Section 4.3), and the uncertainty during individual events
(Section 4.4). The overall uncertainty focuses on basin-averaged fluxes
(Section 4.3.1) as well as the spatial variability of these fluxes (Section
4.3.2).

4.1. Model calibration

With 2000 as initialization year, SPHY was calibrated using dis-
charge measured at the outlet during the period 2001-2009. No dis-
charge observations were available for 2004, the first 3 months of 2005,
and from August 2006 through March 2007. Table 1 shows the opti-
mized model parameters that were obtained through calibration using

properties of the Hupsel catchment untill the clay layer. Because of the the Model-Independent Parameter Estimation (PEST) package
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the y-axis, while the results obtained using radar are shown on the x-axis. Results are shown for 1, 5, 10, 20, 40, 60, 80, and 100 stations, indicated as st. For rainfall
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(Doherty, 2005). PEST optimizes the parameters using the Gauss-Mar- average observed discharge (25 mm). Based on the performance in-
quardt-Levenberg (Fletcher, 1973) method for which the discrepancies dicators and water balance we consider the calibrated model suitable
between model simulations and corresponding observations are re- for the remainder of this study.

duced to a minimum in the weighted least squares sense.

Observed vs. calibrated simulated discharge is shown in Fig. 3. For
the calibration period 2001-2009 a Nash-Sutcliffe (NS) efficiency
(Nash and Sutcliffe, 1970) of 0.70, Root-Mean-Squared-Error (RMSE) of
6.56 mm, and Bias of —8.7% were obtained. Strong seasonal discharge
patterns can positively affect the NS because a model is generally well
capable of simulating these seasonalities. Therefore, we have calculated
the NS for some individual years as well. This resulted in NS-values of
0.73, 0.82, 0.69, and 0.63 for 2001, 2002, 2008, and 2009, respec-
tively. Based on these numbers we conclude that the discharge dy-
namics of the calibrated model can be considered as “good” (Foglia
et al., 2009). The average annual rainfall for this period is 793 mm, and
SPHY simulates an average annual discharge of 287 mm, an actual
evapotranspiration of 505 mm, and a change of storage of 1 mm. The
negative model bias (-8.7%) indicates a slight underestimation of the

4.2. Hydrological response using radar rainfall

This section analyzes the hourly radar rainfall throughout the hy-
drological year May 1993 — April 1994, and its impact on the simulation
of soil moisture and discharge. Fig. 4 shows boxplots of hourly spatial
standard deviations (ok; top left) and spatial coefficients of variation
(CVg; top right) of the radar rainfall product (both plots show the hourly
results combined per month), the simulated soil moisture content in the
rootzone (bottom left), and the resulting brook discharge at the outlet
(bottom right). Results are based on the hydrological year May 1993 —
April 1994. Basin-average radar rainfall is shown in the bottom plots as
well. Rainfall totals 789 mm over the entire year, and shows the highest
intensity during November (16.3mmh ™). The spatial variability of
radar rainfall, expressed as o, is also highest for this event. December
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Fig. 9. Left: boxplot for the 10-11 December 1993 rainfall event, with each box representing the spatial radar rainfall distribution. The boxes outer ends correspond
to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile value. Red crosses are outliers and correspond to values outside the
~99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval. Right: radar rainfall on 11 December 1993 between 7:00 and 8:00.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

receives the largest bulk of rainfall, and is characterized as the month
with the highest spatial variation in rainfall. The CV; for this month, as
well as for other winter months, are small compared to those in
May-August, which is due to the larger amount of winter precipitation.
May is characterized by the highest CVs, being the result of a few
rainfall events with a relatively small amount of rainfall, but with high
spatial variability. The large amount of rainfall, together with the high
soil moisture content and low evapotranspiration, results in most dis-
charge being generated during December 1993 and January 1994. The
5th and 95th percentiles indicate that there is substantial spatial var-
iation in the soil moisture content, which is mainly driven by the spatial
distribution of rainfall. The soil properties account for the remaining
spatial variation in soil moisture content, which is more evident during
summer months when there is less rain and soil moisture contents are
rather low. As a result, hardly any discharge is simulated during the
first 5 months. Since rootzone soil moisture contents range between 20
and 30 mm (in a rootzone of 400 mm) during summer, and SPHY re-
duces the amount of evapotranspiration if the soil moisture content in
the rootzone drops below wilting point (pF3.0%49 mm), we notice a
relatively strong reduction in evapotranspiration (~25%). Table 2
shows the water balance as simulated by the SPHY model for the hy-
drological year May 1993 — April 1994.

4.3. Overall uncertainty

4.3.1. Basin averages

For each number of gauges, 106 time series of areal rainfall fields
were constructed using bootstrapping and inverse distance interpola-
tion (Section 3.2). The SPHY model was forced with these 106 x 106
rainfall fields and the resulting basin averaged fluxes are compared
with those obtained using the radar rainfall as forcing. Fig. 5 expresses
the uncertainty in basin average rainfall, soil moisture, discharge, and
evapotranspiration as function of the number of virtual rain gauges.
Uncertainty is expressed as the 5th to 95th interpercentile range of 106
bootstrap samples with 8760 hourly differences between interpolated
virtual rain gauges and the radar rainfall. Differences are taken relative
with respect to the “true” value averaged over the hydrological year
(Table 2). Fig. 5 shows that if we use only one rain gauge to represent
the areal Hupsel Brook rainfall, we may introduce an uncertainty that
could be more than six times the average hourly rainfall, which com-
pares to an uncertainty of nearly 0.54 mm h ™. This means that 90% of
the time, the absolute error is smaller than 0.54mmh~! for hourly

rainfall accumulations if only a single rain gauge is available. Adding
more rain gauges would reduce this uncertainty rapidly; with 10 rain
gauges the uncertainty reduces to twice the average hourly rainfall, and
more than 40 gauges are required to reduce the uncertainty to a value
smaller than the average hourly rainfall.

The number of gauges used to estimate the areal rainfall of the
Hupsel Brook catchment has an impact on the simulated hydrological
behaviour of this small rural lowland catchment. The uncertainty as-
sociated with estimating areal rainfall has the largest effect on the si-
mulated discharge, and to a lesser extent on the simulated soil moisture
and actual evapotranspiration. The topsoil, which basically contains
loamy sand, has a high saturated hydraulic conductivity (basin average
213mmh ™). As a consequence, any water surplus above field capacity
leaves the soil column relatively quickly as discharge, hence the effect
of erroneus areal rainfall estimation on the simulation of soil moisture
content is minor in this case. One rain gauge may result in a soil
moisture simulation uncertainty that is 8% of the annual average
rootzone soil moisture content (~79mm), which corresponds to
~6 mm. Although with one rain gauge the uncertainty in simulated
hourly discharge will be smaller than the average hourly discharge, it
may approach 60% of the average hourly discharge. This inter-
percentile range is reduced to + 20% if 10 rain gauges are used. With
40 rain gauges or more the uncertainty in simulated hourly discharge
becomes smaller than 10% of the average hourly discharge. For the
actual evapotranspiration, there is a 90% probability that the un-
certainty is within 10% of the average evapotranspiration if one rain
gauge is used, which corresponds to ~0.1 mm d ™.

Fig. 6 shows from top to bottom for 1, 5, 10 and 20 gauges, the
values obtained using radar rainfall (i.e., the average of all 106 pixels)
on the x-axis versus the 5th and 95th percentiles of the 106 bootstrap
samples on the y-axis. The temporal resolution of interest is hourly. It is
clear that if more rain gauges are used to estimate the areal rainfall, the
simulated hydrological fluxes get closer to those simulated using the
original radar rainfall fields. The near-linearity for soil moisture and
actual evapotranspiration indicates that one rain gauge is sufficient to
obtain a reasonably bias-free simulation of these fluxes in the Hupsel
Brook catchment. With 10 rain gauges or more, the simulated values for
soil moisture and actual evapotranspiration are almost identical to
those simulated using radar rainfall. With one rain gauge we estimate a
95th percentile basin-average rainfall intensity of 35mmh™!, while
radar indicates 17 mmh ™" for this paricular event. For discharge the
95th percentile is 1.7mmh~! with one rain gauge, while this is
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Fig. 10. Boxplots showing, as function of the number of rain gauges, the uncertainty in basin average rainfall (R), discharge (Q), and soil moisture (S) for the 10-11
December 1993 rainfall event. The boxes outer ends correspond to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile
value. Red crosses are outliers, and correspond to values outside the ~99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval.
The black line represents the “true” values for rainfall, discharge, and soil moisture, based on the complete radar rainfall fields. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

0.6 mm h ™! if true basin-average rainfall is used as input. This is related
to the fact that the distribution of hourly rainfall accumulations is ex-
tremely asymmetrical. Adding 4 rain gauges results in an appreciably
reduced uncertainty of the simulated discharges. Although we may still
over- or underestimate the discharge during some events, the addition
of 4 gauges improves the simulation of discharge substantially. With
more than 10 rain gauges we are able to have a areal rainfall estimate
that is more or less equal to that calculated using radar rainfall.

4.3.2. Spatial variability

Fig. 7 shows the 5th to 95th interpercentile range of the average
hourly CV for rainfall (a) and soil moisture (b). The average CV has
been calculated as the average of all hourly CVs in one particular
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bootstrap sample. The true average hourly CV is 1.8, being substantially
higher than the CV obtained using two rain gauges, which ranges be-
tween O and 0.4. A nearly linear increase in CV can be seen if more rain
gauges are added. It is also interesting to note that it takes more rain
gauges to match the spatial variability of radar rainfall, than the
number of gauges required to match the basin average radar rainfall
(Fig. 5).

Although the CV of rainfall increases if more rain gauges are used,
this is less evident for the CV of soil moisture. The spatial distribution of
soil moisture content is not only a function of rainfall, but also of soil
properties, land cover, and model properties. This explains why a un-
ique combination of a few rain gauges, soil properties and land cover
may lead to a slightly higher soil moisture CV than what may be
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Fig. 11. Boxplot for rainfall event on 11-13 November 1993 with each box
representing the spatial radar rainfall distribution. The boxes outer ends cor-
respond to the 25th and 75th percentile values, and the horizontal line corre-
sponds to the 50th percentile value. Red crosses are outliers, and correspond to
values outside the ~99.3% coverage. Hours on the x-axis correspond to the end
hour of each hourly time interval. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

obtained by using true rainfall. If the soil moisture CV obtained using a
few rain gauges is larger than the soil moisture CV obtained using radar
rainfall, then the soil hydraulic properties and land cover properties
have a larger contribution to the soil moisture CV than rainfall alone.
However, it is clear that the bulk of the interpercentile range is below
0.151 (obtained using true rainfall), which implies that the largest
contribution to the soil moisture CV comes from rainfall. To evaluate
more precisely to what extent the captured spatial rainfall variability,
being a function of the number of rain gauges, accounts for the spatial
soil moisture distribution, and to what extent the spatial soil moisture
distribution is due to the memory of the hydrological model, the
average CV of soil moisture is divided by that of rainfall. We have
plotted this ratio (5th and 95th percentile) as function of the number of
rain gauges (Fig. 7, c). Using one rain gauge obviously results in a zero
CV for rainfall and therefore results are plotted for more than two rain
gauges. Based on this figure we may conclude that on average at least
three rain gauges are required to add more spatial variation in the si-
mulated soil moisture content of a small rural lowland catchment than
is contributed by the model’s memory (soil properties and land cover).
It is clear that the number of rain gauges quickly overrules the spatial
variation in soil moisture content that is contributed by the model’s
memory.

Fig. 8 shows the hourly CVs obtained using radar rainfall (x-axis) vs.
the 5th and 95th CV percentiles of the 106 bootstrap samples (y-axis).
Results are shown for 1, 5, 10, 20, 40, 60, 80, and 100 stations, and are
shown for rainfall (R) and soil moisture (S). These are hourly CVs and
therefore not averaged over the entire year, as was done in Fig. 7. As
shown before, a substantial number of rain gauges is required to cap-
ture the same spatial variability in rainfall as obtained when using radar
rainfall. More than 80 rain gauges are required to capture the spatial
variability of radar rainfall. This is a substantial number of rain gauges
(approx. 12 gaugeskm™2), considering the small size of the Hupsel
Brook catchment (6.5km?). The number of rain gauges required to
match the spatial variability of radar rainfall is therefore substantially
higher than the number of gauges required to match the basin average
radar rainfall (Fig. 6). Using radar rainfall as input, the hourly average
CV of simulated soil moisture equals 0.15 (Fig. 4). The small hourly CVs
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of simulated soil moisture (Fig. 8) indicate that the spatial variation in
soil moisture is relatively small, which results from the high saturated
hydraulic conductivity (on average 213 mm h 1) that causes any water
surplus above field capacity to leave the soil column relatively quickly
as discharge.

4.4. Single events

Section 4.3 focused on the uncertainties in rainfall, soil moisture,
discharge, and evapotranspiration that may occur within the time
frame of one year as a function of the number of rain gauges used for
estimating the areal rainfall. This section continues this analysis by
analyzing two rainfall events in detail. For these events the SPHY model
was forced using the same bootstrapped rainfall fields for the rain
gauges as done in Section 4.3, assuming soil moisture is initially at field
capacity.

4.4.1. 10-11 December 1993

The first event starts on the 10th of December 1993 at 15:00 (local
time) and ends on the 11th of December 1993 at 09:00. The “true”
radar rainfall, including the spatial rainfall distribution, is shown in
Fig. 9. This event is interesting because it rains continuously with a rate
of approx. 3mmh™? for 18 h, with several pixels giving significantly
higher rainfall intensities. The rainfall sum for this event is approx.
35 mm for the majority of pixels, and ranges from 130 to 160 mm for a
few pixels. This substantial difference in rainfall intensity between the
radar pixels may be questionable. Therefore, the rainfall intensities for
all radar pixels during the highest intensity rainfall hour (11 December
1993, 07:00-08:00) are shown in the right plot of Fig. 9. Since the
higher rainfall pixels are clustered, as one would expect for rainfall, we
conclude that the radar signal can be trusted for this event.

Fig. 10 reflects the uncertainty in basin average rainfall (R), dis-
charge (Q), and soil moisture (S) for this event, as function of the
number of rain gauges. Using the radar rainfall the discharge peaks at
13:00, which is 4 h after the last hour with rainfall, whereas the soil
moisture content declines immediately after it stops raining. It is clear
that the uncertainty in basin-average rainfall, discharge, and soil
moisture can be signficant if only one rain gauge is used. Especially at
the end of the event, where radar rainfall intensities are highest, the
areal rainfall estimated using one rain gauge can vary between 0 and
35mmh~'. Compared to the radar rainfall intensity (approx.
5mmh 1), the potential error ranges between —100 and 600%. The
resulting uncertainty in the simulated discharge increases until the river
discharge peaks, which is 21 h after the start of the event. At this peak
the reference discharge is approximately 0.6 mmh™?, whereas using
only one rain gauge may result in a simulated discharge of
0.2-2mmh ™, which is an uncertainty that ranges between —67 and
233%. Interestingly, the uncertainty in simulated soil moisture content,
which is much smaller compared to that of discharge, starts increasing
after it has stopped raining, and ranges between —6 and 2%. Adding
more rain gauges to estimate the areal rainfall results in better simu-
lations for discharge and soil moisture, with the largest positive effect
on discharge. With 5 rain gauges the range of potential errors in dis-
charge at the time of peak has dropped to between —50 and 100%. This
range becomes —17 to 33% if 25 rain gauges are used.

4.4.2. 11-13 November 1993

The second selected rainfall event starts on the 11th of November
1993 at 19:00 and ends on the 13th of November 1993 at 01:00. Fig. 11
shows the “true” radar rainfall for this event, including the spatial
rainfall distribution. Compared to the first event this event shows a
different pattern; for a duration of 7h we notice some initial rainfall
with intensities between 0 and 9mmh ™", with a few pixels measuring
10-14mmh ™" during one specific hour, followed by a period of 12h
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Fig. 12. Boxplots showing for 1, 5, 10, 20 and 25 rain gauges the uncertainty in basin average rainfall (R), discharge (Q), and soil moisture (S) for the 11-13
November rainfall event. The boxes outer ends correspond to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile value.
Red crosses are outliers, and correspond to values outside the ~99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval. The
black line represents the “true” values for rainfall, discharge, and soil moisture, based on the complete radar rainfall fields.

without rain, and finally another event ending at 18:00 with rainfall
intensities of 5-35mmh~!. This day is relevant because it actually
contains two different events; a bit of initial rainfall followed by a dry
spell and finally a second event giving the bulk of the rainfall, being an
accumulated 15-48 mm of rain.

Fig. 12 shows the uncertainty in basin average rainfall (R), dis-
charge (Q), and soil moisture (S) for this event, as function of the
number of rain gauges. We can distinguish two discharge peaks as a
result of the two rainfall events. As expected we notice a recession in
the soil moisture contents after the end of each rainfall event. It is clear
that, although the uncertainty in basin-average rainfall is substantial for
this event (767 to 133%), the uncertainties in simulated discharge and
soil moisture, using one rain gauge, are smaller compared to the 10-11
December event. This can be explained by the nature of this event,

330

being less spatially variable (Fig. 11 vs. Fig. 9), with a lower total
rainfall sum and a dry spell in between the two events. The 10-11
December event was characterized by an 18-h period of continuous
rainfall with intensities between 3 and 18 mmh ™!, with a few pixels
giving 130-160 mm h ™. This resulted in a rising discharge peak with
errors increasing in time as the peak grew in size, which is certainly not
the case for the 11-13 November event. One rain gauge for this event
results in a simulated discharge error of 0.10-0.25 mmh™?!, which is
—40 to 100% of the reference discharge. With 5 rain gauges the error in
areal rainfall ranges between —33 and 100%, while the error in simu-
lated discharge ranges between —20 and 20%. Adding more rain gauges
reduces this error less rapidly compared to that of the 10-11 December
event. Errors made in the simulation of soil moisture contents are ne-
glegible for this event.
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Fig. 13. Spatial CVs of hourly radar rainfall before clutter removal and scaling
(x-axis) vs. spatial CVs of hourly radar rainfall after clutter removal and scaling
(y-axis).
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5. Discussion

It is well-known that data obtained from weather radars are affected
by multiple sources of error (Hazenberg et al., 2011). This was also
demonstrated by Berne et al. (2005), who found a significant under-
estimation of observed discharge if the lumped HBV model was forced
with radar estimated rainfall. Data from the X-band radar used in the
current study were not corrected for these sources of error, and may
therefore be less representative for the “true” rainfall. Local errors in
the radar rainfall fields, known as residual clutter, were removed using
a variable threshold (Section 2.2). The unrealistically high spatial
variation caused by residual clutter in the radar data was effectively
removed by applying this variable threshold. A comparison between the
hourly CVs of the uncorrected and corrected rainfall fields indeed
shows a reduction in spatial variation (Fig. 13). Residual clutter that
was not removed through this method could create additional spatial
variation that would not be there in the “true” rainfall, and could
therefore influence our results. However, since the synthetic rainfall
products are derived from one and the same X-band radar product, the
relative difference between them is not affected by the sources of error
that could be present in the X-band rainfall data, and the corrections we
have applied to it. Hence, we argue that this dataset is suitable to study
the sensitivity of a hydrological model to the input rainfall sampling.

The areal rainfall over the Hupsel Brook catchment for each syn-
thetic rainfall product was calculated using Inverse Distance Weighted
(IDW) interpolation (Shepard, 1968). Initially, two different inter-
polation techniques were used to construct synthetic rainfall products
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Fig. 14. Hourly standard deviations of radar rainfall pixels (o) as function of the hourly basin average radar rainfall (R). Linear fits for rainfall intensities <2mmh ™ 1

and intensities >2mmh ™! are shown as well. Both axes are logarithmic.
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from the high-resolution rainfall radar, namely simple averaging and
IDW. Comparison of the resulting rainfall fields from these interpola-
tion techniques showed hardly any difference in terms of rainfall depth
or spatial variation. The selected IDW interpolation technique is a re-
latively “safe” interpolation technique; i.e. IDW is an exact interpolator
and the maximum and minimum values can only occur at the sample
points. Other interpolation techniques (e.g. Cubic Spline (Wegman and
Wright, 1983)) may lead to values outside the data range, which could
increase the spatial variation and thus uncertainties as well. The near
linear increase in CV (Fig. 7) could be the result of the chosen inter-
polation method. This was further analyzed (not shown) by calculating
the CV over the bootstrapped “rain gauge” pixels only; i.e. the calcu-
lated CV is independent of the interpolation method. Again, a linear
increase in CV was noticed, meaning the linear increase in CV is in-
dependent of the chosen interpolation method.

The original images from the high-resolution X-band radar (120 m
range resolution, 1.875-degree angular resolution, 16 s temporal re-
solution) were aggregated to a 250 m spatial resolution and hourly
temporal resolution. Especially the temporal aggregation from 16 s to
1 h would significantly impact our results if our catchment would have
been fast responding, where short-duration storm events lead to a dis-
charge response at the outlet within the timeframe of an hour. This is
particularly true for urbanized catchments (Gires et al., 2012; Ochoa-
Rodriguez et al., 2015; Peleg et al., 2017). However, the Hupsel Brook
catchment has a response time of three hours (Brauer et al., 2016),
hence the hourly resolution is sufficient for the purpose of this study.
The selected hydrological model normally runs on a 250 m spatial re-
solution, which is the main reason for aggregating the original 120 m
range resolution to the 250 square-grid resolution. This aggregation
resulted in 106 radar pixels for our study area, which is far more than
what can be obtained from the operational KNMI C-band radar (6-7
pixels only).

If the X-band SOLIDAR data would have been stationed in or near
the Hupsel Brook catchment, then we could have used the rain gauge
located in the Hupsel Brook catchment to correct the X-band derived
rainfall fields, and eventually use those corrected fields to calibrate the
SPHY model. A calibrated model based on the same radar rainfall fields
as used for the “true” rainfall product and synthethic rainfall products
can be considered as the most optimal situation. In order to have the
best possible representation of the hydrological situation of the Hupsel
Brook catchment we forced the model with locally measured rainfall
and evapotranspiration fields, and calibrated the model using ten years
of observed discharge records, which is a similar approach to Brauer
et al. (2016). In analyses of extreme precipitation over The Netherlands
(Overeem et al., 2008), as well as analyses of space—time correlation
structure (Van De Beek et al., 2011; Van de Beek et al., 2012), it is
typically assumed that rainfall over The Netherlands can be considered
statistically homogeneous. The Netherlands is a small and flat country,
and climatological differences are therefore small (KNMI, 2018). The
annual average rainfall in the Netherlands ranges between 700 and
900 mm (KNMI, 2018). After the removal of residual clutter, the annual
rainfall for all pixels was 551 mm. Because of this climatological dif-
ference, we corrected the hourly radar rainfall fields with a constant
factor to match the annual rainfall sum of Hupsel as recorded by the
local rain gauge in the Hupsel Brook catchment. This is a justified ap-
proach, because i) for such a small lowland catchment one may assume
that the annual rainfall sum for all radar pixels is equal (Overeem et al.,
2008; Van De Beek et al., 2011; Van de Beek et al., 2012), and ii) this is
not a validation study but a sensitivity analysis.

Fig. 6 (top-left plot) shows that uncertainties are larger with higher
rainfall intensities. Rainfall tends to be more localized for higher in-
tensities, thus increasing the spatial variation within the catchment.
This increases the likelihood of sampling a rain pixel with more/less
rainfall than what would be the case if rainfall has a lower intensity
with a more uniform spatial distribution. This is also shown by Fig. 14,
in which the hourly standard deviation of the radar rainfall pixels (y-
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axis) is plotted as function of the hourly basin average radar rainfall (x-
axis). Higher rainfall intensities are associated with higher values for o,
and thus a higher uncertainty. The increase in oy is smaller compared to
the increase in basin average rainfall for intensities smaller than ap-
proximately 2mm h ™. For rainfall intensities >2 mmh ™!, the increase
in og tends to be stronger, indicating an even larger uncertainty for
convective systems. Other studies (e.g. Nicdtina et al., 2008;
Nikolopoulos et al., 2011; Ochoa-Rodriguez et al., 2015; Gires et al.,
2012) found that larger catchments have a dampening effect on the
rainfall variability, and thus the associated uncertainty. Although
Ochoa-Rodriguez et al. (2015) and Gires et al. (2012) focused on ur-
banized catchments, we feel that the interplay of the catchment size
with rainfall variability and the associated uncertainty in the simulation
of the hydrological response needs more attention for rural lowland
catchments with sizes larger than the 6.5 km? used in the current study.

This study revealed that areal rainfall estimations are very sensitive
to the number and locations of rain gauges, which was also found by
Bell et al. (2000) and Faures et al. (1995). We found that one rain gauge
may lead to an uncertainty in areal rainfall that is six times larger than
the average hourly rainfall. The associated uncertainty in discharge
simulations using one rain gauge is smaller, but is still 60% of the
average hourly discharge, and is reduced to + 20% if 10 rain gauges are
used. Berne et al. (2005) found that the uncertainty in hourly discharge
simulations associated with the sampling uncertainty of mean areal
rainfall over a ~1600 km? catchment from 10 rain gauges was + 25%,
whereas we found an uncertainty of +20% if 10 rain gauges are used
over a~6.5 km? catchment. Their associated rain gauge density is 1 rain
gauge per 160 km?, whereas our rain gauge density is 1 rain gauge per
0.65km? (i.e., much higher). Given these differences in rain gauge
density, we may conclude that the uncertainty found in the current
study is substantially larger than found by Berne et al. (2005). A logical
explanation to this is that they forced a lumped model (HBV), whereas
we maintained the spatial rainfall fields of the rainfall radar by forcing
a distributed hydrological model. This increases the chance that a radar
pixel with extreme rainfall coincides with a model pixel with extreme
high or low conductivities, or that an extreme rainfall pixel occurs near
or far away from the outlet. Additionally, we have used a very high
spatial resolution X-band radar compared to the C-band radar used by
Berne et al. (2005). The high spatial resolution of this X-band radar
increases the chance of sampling a pixel with more extreme rainfall,
and discharge simulations could thus be more uncertain. An interesting
follow-up would therefore be to repeat the current study for the Hupsel
Brook catchment using the lumped HBV (Lindstrom et al., 1997) or
WALRUS (Brauer et al., 2014) model instead of the SPHY model as
hydrological model. However, since these models are lumped it is not
possible to evaluate soil moisture and evapotranspiration processes
spatially, but only as aggregated processes over the catchment area.

The current study only analyzed the impact of different spatial
rainfall resolutions on the hydrological simulations of a small lowland
catchment. Peleg et al. (2013) analyzed the number of rain gauges re-
quired to adequately measure rainfall in a typical radar subpixel scale,
and found that the uncertainty from averaging a number of rain stations
per radar pixel decreased if timescales where increased from one
minute to one day. Although the spatial resolution (1 km range re-
solution, 1.4-degree angular resolution) of the radar used in their study
is coarser compared to the aggregated X-band radar used in our study,
the effect of aggregating radar rainfall to temporal resolutions larger
than one hour was not addressed in our study. Given the ~3-h response
time of the Hupsel Brook catchment, time-scales smaller than one hour
are less relevant to investigate, but the impact of aggregating time-
scales to temporal resolutions larger than one hour is a crucial question
to answer in a future study.

Although SPHY was successfully calibrated for this study, this model
has some limitations that could affect the results found in this study.
First, surface runoff in SPHY is only conceptualized as saturation excess
runoff (Hewlettian runoff (Dunne, 1978; Hewlett, 1961)). Infiltration
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excess runoff (Hortonian runoff) is not conceptualized in SPHY, which
means that in the event where the rainfall intensity exceeds the in-
filtration capacity, the runoff in SPHY is underestimated. In other
words, the uncertainty in simulated discharge, as function of the
number of rain gauges, could be larger than that found in this study if
rainfall intensities are high. However, since the saturated hydraulic
conductivities of this specific lowland catchment are rather high, the
chance that the rainfall intensity exceeds the infiltration capacity and
thus that the simulated runoff underestimates the actual runoff is small.
Second, the hourly model resolution of SPHY in relation to the hourly
aggregated radar rainfall would be a limiting factor if the focus would
be on fast responding catchments, e.g. urbanized catchments with re-
sponse times in the order of minutes. For the lowland catchment used in
this study, however, the hourly model resolution is not a limiting factor
because the response time of the Hupsel Brook catchment is approxi-
mately 3h (Brauer et al., 2016). Finally, streamflow routing in SPHY is
conceptualized as a rather simple process where all specific cell-runoff
is accumulated over the channel network and delayed with a single
routing coefficient kx (Terink et al., 2015). This means that the model’s
flow velocity is not affected by channel properties such as slope,
roughness, and wetted perimeter, which are generally implemented in
more advanced routing methods that use the Manning equation
(Manning, 1889) for example. Although this has not been evaluated in
this study, we think that the simple routing process implemented in in
SPHY has a minor effect on the simulated discharge because the Hupsel
Brook is a small lowland catchment with quite uniform channel slopes.
According to Warmerdam (1979), however, the presence of drains and
culverts can lead to a fast discharge response if the catchment is satu-
rated. Since culverts and drains are not conceptualized in SPHY, we feel
our results are less reliable if soils are saturated and water levels in the
brook are very high. An interesting follow-up study would therefore be
to use a spatially distributed model with a more hydraulically based
routing scheme that allows for the implementation of drains and cul-
verts.

Other factors that may have an effect on the results presented in this
study are the soil hydraulic properties and land use of the Hupsel Brook
catchment. An example of this is the small uncertainty in simulated
basin-average soil moisture contents and the spatial variablity thereof.
This is basically due to the high saturated hydraulic conductivity of the
topsoil, which causes any water surplus above field capacity to leave
the soil relatively quickly as discharge, and hence the effect of erro-
neous rainfall estimation on the simulation of soil moisture is minor.
The same holds for the simulation of evapotranspiration: due to the
small amount of rainfall during pre-summer and summer, soil moisture
contents are rather low (between 20 and 40 mm in a rootzone of
400 mm), which leads to a too strong reduction in evapotranspiration
because SPHY reduces the amount of evapotranspiration if the soil
moisture content drops below the wilting point (~¥49 mm). Results in
our study are not affected by different intial soil moisture conditions
due to the high saturated hydraulic conductivity of the topsoil in
combination with the relatively low rainfall sum at the start of the
hydrological year. However, the effect of different initial soil moisture
conditions cannot be ignored for other basins. This was highlighted by
Paschalis et al. (2014), who quantified the importance of various
characteristics of the spatial and temporal structure of a rainfall event
in the generation of a flood for different initial conditions of soil
moisture. They found that initial soil moisture conditions and their
interaction with the space-time distribution of precipitation are of
paramount importance. Despite the uncertainties, we feel that the re-
sults presented in this study are representative for small (~6.5 km?) free
draining lowland catchments and soils with a high soil hydraulic con-
ductivity.

6. Conclusions

The objective of this study was to evaluate the impact of the
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sampling of spatially variable rainfall by a given number of rain gauges,
on hydrological simulations of a small rural lowland catchment. The
most important results can be summarized as:

1. Using one rain gauge to represent the Hupsel Brook rainfall may
lead to a potential error of more than six times the average hourly
rainfall. More than 40 rain gauges are required to reduce this po-
tential error to values <0.1 mmh ™. The associated uncertainty in
simulated discharge may approach 60% of the average hourly dis-
charge. This is reduced to + 20% if 10 rain gauges are used, and
+ 10% if 40 rain gauges are used;

. Because of the high saturated hydraulic conductivity of the top soil,
the number of rain gauges used to represent the Hupsel brook
rainfall hardly affects the simulation of soil moisture;

. At least 12 gauges per km? are required to capture the spatial
rainfall variation that is present in radar rainfall estimates;

. On average, at least three rain gauges are required to add more
spatial variation in the soil moisture content than is contributed by
the model’s memory.

. The uncertainty in the estimation of areal rainfall and simulation of
discharge is larger with higher rainfall intensities;

. For a single rainfall event (18-h duration, average intensity of
3mmh~?) it was found that the uncertainty in peak areal rainfall
estimated using one rain gauge may range between —100% (i.e., it
does not rain on the gauge) and 600%. The associated uncertainty in
simulated discharge for this event ranges between —67 and 233%.
With 25 rain gauges the uncertainty in simulated discharge is still in
the range of —17 to 33%;

. The number of rain gauges does not affect the timing of the simu-
lated peak discharge response, which is likely due to the high sa-
turated hydraulic conductivity of the top soil, and the resulting short
response time of the catchment.

Despite the influence of the properties of the catchment and the
hydrological model on the results, we feel that the results contribute to
our practical and scientific understanding of estimating areal rainfall at
high spatial resolutions in order to be able to accurately describe the
hydrological behaviour of small rural lowland catchments. Ideally, the
approach followed in the current study should be repeated for different
temporal resolutions, larger catchments, different climatological zones,
and using a variety of model conceptualizations.
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