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A B S T R A C T

Many studies suggest that high-density rain gauge networks are required to capture the rainfall heterogeneities

necessary to accurately describe the components of the hydrological cycle. However, equipping and maintaining

a high-density rain gauge network will also involve high costs. Although many studies provided useful insights

on the required accuracy of rainfall estimates to accurately describe the components of the hydrological cycle,

most of these studies focused on streamflow simulations, large river basins or urban environments. The objective

of this study is therefore to evaluate the impact of uncertainties in areal rainfall, estimated at several spatial

resolutions, on hydrological simulations of a small ∼6.5 km2 rural lowland catchment. The approach followed in

this study is to force a calibrated spatially-distributed hydrological model (SPHY) with rainfall retrieved from an

X-band radar and various synthetic rainfall products, calculated using bootstrap samples of a varying number of

radar pixels, treated as virtual rain gauge locations within the catchment. This enables us to determine the most

appropriate resolution of rainfall data to accurately describe the hydrology of a small rural lowland catchment.

We found that the use of one rain gauge to estimate the catchment’s areal rainfall may lead to a potential error of

more than six times the average hourly rainfall. This may lead to uncertainties in simulated discharge that

approach 60% of the average hourly discharge. More than 40 rain gauges are required to reduce the potential

error in areal rainfall estimation to values< 0.1mmh−1. The associated uncertainty in discharge simulations is

20% if 10 rain gauges are used, and 10% if 40 rain gauges are used. The simulation of soil moisture contents and

evapotranspiration rates are hardly affected by the number of rain gauges used to estimate the areal rainfall,

which is due to the high saturated hydraulic conductivities of the top-soil. At least 12 gauges per km2 are re-

quired to capture the spatial rainfall variation that is present in radar rainfall estimates. Analysis of an individual

18-h rainfall event revealed that the uncertainty in peak areal rainfall estimated using one rain gauge may range

between −100% and 600%. The associated uncertainty in simulated discharge for this event ranges between

−67 and 233%. With 25 rain gauges the uncertainty in simulated discharge is still in the range of −17 to 33%.

1. Introduction

It is well-known that rainfall is a highly heterogeneous process

covering an extensive range of scales in time and space (Marani, 2005;

Nicótina, 2008). Despite the fact that accurate estimates of rainfall in

terms of location and intensity are crucial for operational water man-

agement, as well as for the hydrological research community (Van de

Beek et al., 2010), hydrologists have traditionally put more effort in the

development of evermore sophisticated rainfall-runoff modeling ap-

proaches than in the development of improved techniques for the

measurement and prediction of the space–time variability of rainfall

(Berne et al., 2005). However, during the last few years substantial

effort has been put in modeling high-resolution rainfall in both space

and time (Paschalis et al., 2013; Nerini et al., 2017; Peleg et al., 2017).

Traditionally, the rain gauge has been the most common instrument

to measure rainfall (Sohn et al., 2010; Van de Beek et al., 2010; Van de

Beek et al., 2012). A disadvantage of a rain gauge is that it only pro-

vides point measurements and therefore lacks information on the spa-

tial variability (Van de Beek et al., 2010), unless used in a network of

rain gauges with a sufficient density. Lebel et al. (1987) showed that if

rainfall measurements are based on ground measurements only, their

accuracy depends on the spatial variability of the rainfall process and
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the density of the rain gauge network. For short timescales (up to

15min) and regions that are characterized by frequent low rainfall

rates, the spatial rainfall correlations are likely to be corrupted by

measurement uncertainties (Villarini et al., 2008). Peleg et al. (2013)

found that at least three rain stations are needed to adequately re-

present the rainfall on a typical radar pixel scale. Berne et al. (2005)

concluded that the uncertainty in hourly discharge simulations asso-

ciated with the sampling uncertainty of the mean areal rainfall esti-

mated over a ∼1600 km2 catchment from 10 rain gauges was ± 25%,

being of the same order of magnitude as that associated with the model

variables describing the initial state of the model. Faurès et al. (1995)

concluded that the use of a single rain gauge can lead to large un-

certainties in runoff estimations for a small-scale (4.4 ha) semi-arid

catchment, dominated by convective rainfall. This suggests that high-

density rain gauge networks are required to capture the rainfall het-

erogeneities necessary to accurately describe the components of the

hydrological cycle (Lobligeois et al., 2014). However, equipping and

maintaining a high-density rain gauge network will also involve high

costs (Pardo-Igúzquiza, 1998). In order to be more cost-effective, water

managers would therefore benefit from information indicating the

number of rain gauges, their spatial distribution, and measuring in-

terval required to accurately describe the hydrological processes in

their management area.

Other techniques to measure rainfall include the use of weather

radar (Berne et al., 2005; Berne et al., 2004; Van de Beek et al., 2012),

disdrometers (Joss and Waldvogel, 1969) and microwave links (Leijnse

et al., 2007a,b; Overeem et al., 2013). All these instruments have their

pros and cons when it comes to measuring rainfall. Compared to the use

of a single rain gauge, weather radar is capable of capturing the spatial

variability of rainfall over larger areas (Van de Beek et al., 2012; Van de

Beek et al., 2010), although it is well-known that data obtained from

weather radars are affected by multiple sources of error (Hazenberg

et al., 2011; Villarini and Krajewski, 2010). Weather radar and rain

gauges are complementary to each other and are therefore often com-

bined to generate bias-corrected weather radar images (Hazenberg

et al., 2011; Rabiei and Haberlandt, 2015). The potential of weather

radar retrieved rainfall for hydrological applications has been in-

vestigated in several studies (e.g. Berne et al., 2005; Van de Beek et al.,

2010; Ochoa-Rodriguez et al., 2015; Paschalis et al., 2014). Berne et al.

(2005) investigated the potential of a C-band doppler weather radar for

hydrological applications in the Ourthe catchment (∼1600 km2), Bel-

gium. Forcing the lumped HBV model with the radar-estimated mean

areal rainfall, they found a significant underestimation with respect to

the observed discharge. Hazenberg et al. (2011) corrected the same C-

band doppler weather radar for errors related to attenuation, ground

clutter, anomalous propagation, the vertical profile of reflectivity, and

advection, and demonstrated the potential of applying weather radar

information as input to the HBV model, without using any rain gauge

information. Van de Beek et al. (2010) evaluated the performance of

high-resolution X-band radar for rainfall measurement in The Nether-

lands, and found that X-band radar is able to measure the space–time

variation of rainfall at high resolution, far greater than what can be

achieved by rain gauge networks.

It is clear that a key question to be answered is: “what is the ac-

curacy of rainfall measurements that is required to accurately describe

the components of the hydrological cycle” (Bell et al., 2000; Nicótina,

2008)?. According to the studies above this issue is dominated by the

spatial resolution of the rainfall product used. Others (Brauer et al.,

2016; Krajewski et al., 1991; Wilson et al., 1979), however, have con-

cluded that the temporal rather than the spatial variability plays a

primary role in the hydrologic response, with Brauer et al. (2016) and

Krajewski et al. (1991) focusing on small catchments (<7.5 km2). Huza

et al. (2014) highlights the strong relation between the occurrence of

flash floods and initial soil moisture conditions. Other studies (Van de

Beek et al., 2012; Berne et al., 2004; Berndtsson and Niemczynowicz,

1988; Ogden et al., 1997; Ochoa-Rodriguez et al., 2015; Rafieeinasab

et al., 2015; Yang et al., 2016) found that rainfall measurements with

high spatial and temporal resolutions are especially required for urban

environments with fast response times. Nicótina (2008) analyzed the

influence of rainfall variability on the hydrologic response as a function

of characteristic spatial scales of rainfall events, water transport pro-

cesses in hillslopes and the channel network, runoff generation me-

chanisms, and basin scale, and concluded that the spatial variability of

rainfall does not significantly influence the flood response for basin

areas up to 3,500 km2. Bell et al. (2000) evaluated the sensitivity of a

lumped and a distributed rainfall-runoff model to rainfall estimates at a

variety of resolutions, focusing on both stratiform and convective

events. They found that a distributed model using rain gauge data as

input is sensitive to the location of rain gauges within the catchment,

and therefore to the spatial variability of rainfall over the catchment,

with a stronger sensitivity for convective rainfall. However, they did

not relate the required resolution of rainfall data to the spatial resolu-

tion of the rainfall-runoff models used.

Although these studies provided useful insights on the accuracy of

rainfall measurements that is required at different spatial and temporal

resolutions to be able to accurately describe the components of the

hydrological cycle, most of them focused on streamflow only. Besides

streamflow, other components of the hydrological cycle, such as soil

moisture content and evapotranspiration are relevant as well for e.g.

agriculture. The majority of studies above focused on river basins in the

order of 100–1,000 km2 (Lebel et al., 1987; Nicótina, 2008; Bell et al.,

2000; Berne et al., 2005), while another substantial number of studies

(Van de Beek et al., 2012; Berne et al., 2004; Berndtsson and

Niemczynowicz, 1988; Ogden et al., 1997) focused on urban environ-

ments with fast response times. We feel that the spatial resolution re-

quired for areal rainfall estimation to accurately describe the hydro-

logical processes in small (<10 km2) rural lowland (slightly sloping and

freely draining (Brauer et al., 2014)) catchments requires additional

attention. The objective of this study is therefore to evaluate the impact

of areal rainfall, estimated at several spatial resolutions, on hydro-

logical simulations of a small rural lowland catchment.

The approach followed in this study is to force a spatially-dis-

tributed hydrological model with rainfall retrieved from an X-band

radar (Van de Beek et al., 2010; Sassi et al., 2014) and various synthetic

rainfall products, calculated using bootstrap samples of a varying

number of radar pixels, treated as virtual rain gauge locations within

the catchment. This enables us to determine the most appropriate re-

solution of rainfall data to accurately describe the hydrology of a small

rural lowland catchment. The Royal Netherlands Meteorological In-

stitute (KNMI) operates two C-band Doppler radars (Overeem et al.,

2009), each providing rainfall images at a 1-km spatial and 5-min

temporal resolutions. Given the course resolution of the C-band radar

data (1 km) with respect to the catchment size (6.5 km2), we have

chosen to use X-band radar data from a different location rather than C-

band radar data at the location of the catchment because of their higher

space time resolution available. Also, disaggregating C-band radar to

higher resolutions means we need to make assumptions about the

small-scale rainfall variability, which are very uncertain and are not

needed in our case with X-band radar. Another advantage of using X-

band radar is that it allows for the detection of convective rainfall

events. The used X-band radar provides a higher spatial (120m range;

1.875 degrees in azimuth) and temporal (16 s) resolution than the C-

band radar operated by the KNMI. The Hupsel Brook catchment (Sec-

tion 2.1) was selected as case-study catchment for this study. This

catchment was also used by Brauer et al. (2016) to analyze the effect of

differences between rainfall measurement techniques on groundwater

and discharge simulations, and by Brauer et al. (2011) to study the

hydrological response of this catchment for an extraordinary rainfall

event. During 24 h on the 26th of August 2010, nearly 160mm of rain

was recorded by the meteorological station in the Hupsel Brook

catchment, which is operated by the KNMI. This extraordinary rainfall

event, with an estimated return period of more than 1000 years, caused
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inundation of several plots in the area. Within seven hours the dis-

charge increased from 5×10−2 to almost 4.5 m3 s−1 (Brauer et al.,

2011). The study by Brauer et al. (2011) underlines the importance of

having high-quality rainfall data, which justifies the context of the

current study; if high quality rainfall data would have been available,

then timely measures could have been taken to reduce the risk of

flooding and minimize damage. Additionally, such extraordinary rain-

fall events help us to better understand the hydrological processes in-

volved.

This paper is organized as follows: Section 2 describes the study area

and the X-band radar data used to derive the synthetic rainfall products.

Section 3 describes the methodology used to remove residual clutter,

obtain the synthetic rainfall products, and the set-up of the spatially

distributed hydrological model. The results are presented in Section 4

and discussed in Section 5. The conclusions are given in Section 6.

2. Data

2.1. Hupsel Brook Catchment

The Hupsel Brook catchment is a small (6.5 km2) lowland catchment

located in the east of the Netherlands (Fig. 1). The Hupsel Brook is a

naturally drained catchment, but since 1960 drain pipes and culverts

have been constructed (Warmerdam, 1979). These drains have been

constructed in 50% of the plots and cause, together with the dense

network of ditches, a fast discharge response when the catchment is

close to saturation (van der Velde et al., 2009). Land use in the catch-

ment consists of grass (59%), agriculture (33%), forest (3%), and urban

areas (5%) (Brauer et al., 2011). Elevation within the catchment varies

from 22m.a.s.l. in the west to 35m.a.s.l. in the southeast. The mean

Fig. 1. Left: the Hupsel Brook catchment in the east of the Netherlands including its discharge and meteorological stations (tertiary channels and drains are not

shown). Right: the gridded model outline of the Hupsel Brook catchment at a 250m spatial resolution. Each grid cell has a drainage direction (derived from the

Digital Elevation Model (DEM)), which is represented by the black lines, and is therefore part of the channel network. Delineating channel networks in lowland

catchments based on a DEM is often a constraint, which explains why the delineated channel network is not a perfect match with reality.

Fig. 2. Left: Example of an aggregated hourly X-band radar image with rain intensity in mm h−1 and range resolution of 120m. Right: Example of an aggregated

hourly X-band radar image with rain intensity in mm h−1 at a 250m resolution square grid. The Hupsel Brook catchment rainfall data is extracted from the black

rectangle. White areas represent radar clutter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Table 1

Optimized SPHY model parameters obtained through calibration for the period

2001–2009. Ksatfact is not a model parameter, but a factor used to optimize the

spatial Ksat values for the root- and subzone layer.

Acronym Description Calibrated value Units

δgw groundwater recharge delay time 160 h

kx flow recession coefficient 0.75 –

GWsatfrac saturated fraction of groundwater layer 0.10 m3 m−3

Ksatfact Ksat factor 1.5 –
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Fig. 4. Annual development of radar rainfall and its effect on the simulation of soil moisture and discharge: a) Boxplots with σR, and b) CVR of radar rainfall (R). In

both plots the hourly results are combined per month. c) Basin average radar rainfall and soil moisture content (S) in the rootzone. The 5th and 95th percentile for the

spatial soil moisture content are represented by the dashed lines. d) Basin average radar rainfall and discharge (Q). Results are shown using the 250m radar rainfall

as input. The boxplots outer ends correspond with the 25th and 75th percentile values, and the horizontal line corresponds with the 50th percentile value. Red crosses

are outliers, and correspond to values outside the ∼99.3% coverage. The two lines of outliers that are visible in b) are likely due to resolution scaling. Results are

based on the hydrological year May 1993 – April 1994. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Fig. 3. Left: observed (Qobs) and SPHY simulated discharge (Qsim) for the calibration period 2001–2009. Right: idem, but for the hydrological year May 2001–April

2002.
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slope of the catchment is 0.8%, while the brook itself has a mean slope

of 0.2% (van der Velde et al., 2009). The brook, with a length of approx.

4 km, has 7 smaller tributaries with lengths between 300 to 1500m

(Warmerdam, 1979). The soil in this catchment consists of loamy sand

with some clay, peat and gravel in the topsoil, which is situated on top

of an impermeable marine clay layer of more than 20m thick (Brauer

et al., 2011). The clay layer is located at a depth that varies between

1.5 m in the southeast to 12m in the west.

These (geo) hydrological properties are the main reason why this

catchment was selected for this study: the impermeable clay layer al-

lows for a accurately delineated watershed with almost zero flow at the

boundaries. This results in a catchment with one aquifer that directly

discharges to the brook, and makes it therefore very suitable for hy-

drological studies, which have been carried out extensively in this

catchment since 1963 (Brauer et al., 2011; van der Velde et al., 2009;

Rozemeijer et al., 2010; Puente et al., 1993; Hopmans and Stricker,

1989; Stricker and Brutsaert, 1978). We refer to these studies for more

information about this catchment.

2.2. X-band radar

The rain data gathered for the purpose of this study was obtained

from an X-band FM-CW (Frequency Modulated – Continuous Wave)

Solid-State Weather Surveillance Radar, known as SOLIDAR. This radar

was installed on the roof of the Electrical Engineering building of Delft

University of Technology (Ligthart and Nieuwkerk, 1990), and col-

lected data during a six-year period, from January 1991 through August

1997 (Uijlenhoet et al., 1997). Data from this radar has been used in

several studies (Sassi et al., 2014; Van de Beek et al., 2010; Leijnse

et al., 2008). After the processing reported by Ligthart and Nieuwkerk

(1990), the range resolution of the radar data is 120m, the angular

resolution is 1.875 degrees, and the temporal resolution 16 s, which are

exceptionally fine for a rainfall radar. For this study we focus on the

hydrological year May 1993 through April 1994, which is the same

period that was used by Van de Beek et al. (2010) and Sassi et al.

(2014).

3. Methodology

3.1. Aggregation and removal of residual clutter

The radar data have been transposed to the Hupsel Brook catchment

(150 km east of Delft) as if the rainfall measured by this radar would

have occured over the Hupsel Brook catchment. Original radar images

obtained from this radar have the typical “pizza slice” shape as shown

in the left plot of Fig. 2. However, the spatially distributed model used

in this study (see Section 3.4) runs at an hourly time-step and a 250m

square-grid resolution. Therefore, the original radar images had to be

aggregated from a polar (120m range resolution, 1.875-degree angular

resolution, 16 s) to a rectangular grid with a 250m spatial resolution

and hourly temporal resolution. Given the i) ∼3-h response time of the

Hupsel Brook catchment (Brauer et al., 2016), ii) the hourly hydro-

logical model resolution, and iii) the small number of radar rainfall

pixels that can be obtained from the KNMI C-band radar (6–7 pixels vs.

106 pixels from aggregated X-band radar), the aggregation to a rec-

tangular grid with a 250m spatial resolution and hourly temporal re-

solution is a valid approach. The aggregation has been done as part of a

study by Sassi et al. (2014), and an example of this is shown in Fig. 2.

Before the original radar data were aggregated, residual clutter was

removed by determining a threshold for each pixel below which rainfall

intensities were set to zero such that the annual rainfall of each pixel

matches the lowest pixel annual rainfall (551mm). In order to be more

representative for the Hupsel Brook catchment, each pixel was subse-

quently scaled to match the 10-year (2000–2009) average annual

rainfall over the Hupsel Brook catchment. The 10-year average annual

rainfall is 801mm according to the meteorological station located

inside the catchment (Fig. 1). The scaling was achieved by multiplying

the time series for each pixel with a constant factor. Hourly rainfall

sums below 0.1mm only account for 2% of the annual Hupsel Brook

rainfall and are therefore classified as “drizzle” and set to zero after

scaling was performed. After this step a rainfall map-series (1 May

1993–30 April 1994) for the Hupsel Brook catchment was created by

extracting the gridded model outline (106 pixels, 13 rows, 16 columns;

see right plot Fig. 1) from the aggregated radar rainfall images.

3.2. Synthetic rainfall products: bootstrapping

With a synthetic rainfall product we refer to a number of virtual rain

gauges randomly distributed within the Hupsel Brook catchment,

where the virtual rain gauge is represented by a pixel from the radar

rainfall product. The Hupsel Brook catchment consists of 106 radar

pixels, which means we can construct a large number of synthetic

rainfall products using 1 to 106 pixels as rain gauges. In order to de-

termine the appropriate resolution of rainfall data to accurately de-

scribe the hydrology of this small rural lowland catchment, boot-

strapping (Efron, 1979; Efron and Tibshirani, 1986) was applied to

generate randomly distributed rain gauge locations for each number of

Fig. 5. 5th to 95th interpercentile range of difference between estimated basin

average rainfall (R), soil moisture (S), discharge (Q), and evapotranspiration

(ETa), as function of the number of rain gauges (pixels), and the corresponding

values based on radar rainfall. Differences are taken relative with respect to the

average hourly value.

Table 2

Water balance with rainfall (R), discharge (Q), potential evapo-

transpiration (ETp), actual evapotranspiration (ETa), and change in sto-

rage ( S∆ ), as simulated by the SPHY model using radar rainfall as for-

cing. Water balance terms are calculated for the hydrological year May

1993 – April 1994.

Flux mm mm d−1

R 789 2.16

Q 394 1.08

ETp 573 1.60

ETa 430 1.18

S∆ −34
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gauges. For this small catchment we chose the number of bootstrap

samples N to be equal to the number of pixels (106). Bootstrapping was

only needed for 2 to 104 rain gauges (pixels), because for 1 rain gauge

and 105 rain gauges exactly 106 possibilities exist. The areal Hupsel

Brook rainfall for each rainfall product is finally calculated through

Inverse Distance Weighted (IDW) interpolation (Eq. (1), Shepard,

1968)) using the number of gauges involved in the random sample:

=
∑

∑

=

=

v
v

i

n

d i

i

n

d

0

1

1

1

1
i
p

i
p (1)

with v0 the value to be estimated, n the number of points used to cal-

culate the unknown value, vi the known value, and di
p distances from

data points to the point to be estimated to the power p. The default

setting was used for IDW, being a power of two and an infinite search

radius. This approach enables us to evaluate the uncertainty involved in

estimating the areal rainfall as function of the number of rain gauges.

By forcing a spatially distributed hydrological model with these syn-

thetic rainfall products, we can evaluate the related uncertainty in the

hydrological response of this catchment.

3.3. Reference evapotranspiration and initial conditions

Because hourly reference evapotranspiration (ETr) data were not

available for Rotterdam (nearest KNMI station from the X-band radar)

for the hydrological year May 1993 – April 1994, we used the 10-year

(2000–2009) hourly average Makkink ETr from the meteorological

station in the Hupsel Brook catchment, which is operated by KNMI.

Potential evapotranspiration is then calculated for each hour by mul-

tiplying the reference evapotranspiration with a crop factor (Kc). Since

the uncertainty analyses will be performed for the hydrological year

May 1993 – April 1994, and soil moisture conditions are generally at

field capacity at the start of the hydrological year, we chose field ca-

pacity moisture conditions as initial condition for all bootstrap runs.

Fig. 6. From left to right: 5th to 95th interpercentile range of basin average rainfall (R), soil moisture (S), discharge (Q), and evapotranspiration (ETa). Percentiles

taken over the bootstrap samples are shown on the y-axis, while the results obtained using the original radar rainfall fields are shown on the x-axis. Results are shown

from top to bottom for 1, 5, 10, and 20 stations. Units are in mmh−1 for R Q, , and ETa, and in mm for S.
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3.4. SPHY model set-up

3.4.1. Introduction

The simulation model used in this study is Spatial Processes in

HYdrology (Terink et al., 2015), which is a spatially distributed hy-

drological model applied on a cell-by-cell basis. SPHY is based on the

PCRaster dynamic modeling framework (Karssenberg et al., 2010;

Karssenberg, 2002; Karssenberg et al., 2001) and describes the hydro-

logical processes in a conceptual way such that changes in fluxes and

storages can be evaluated over time and space. SPHY was set-up and

calibrated for the Hupsel Brook catchment using the KNMI rain gauge

data as input for precipitation. The gridded outline (106 pixels) of the

SPHY model for the Hupsel Brook catchment is shown in the right plot

of Fig. 1. For more details regarding the SPHY model we refer to Terink

et al. (2015).

3.4.2. Input

As static input SPHY requires a Digital Elevation Model (DEM), land

use and soil characteristics, where the latter need to be defined for the

rootzone, subzone, and groundwater layer. The DEM was obtained from

the AHN-2 (AHN, 2015) (Actueel Hoogtebestand Nederland, 5-m hor-

izontal resolution) and was interpolated to the 250-m model resolution.

Land use was obtained from LGN-5 (Hazeu, 2005) (Landelijk Grond-

gebruik Nederland). The soils in the Hupsel Brook catchment have been

classified according to the PAWN-classification (Policy Analysis for the

Watermanagement of the Netherlands) (Wösten et al., 1988), using the

1:50,000 soil map (v6.0) of The Netherlands. This soil map with a pixel

size of 10 ha has been rasterized to the model’s spatial resolution of

250m. Except for the saturated hydraulic conductivity (Ksat [mm h−1]),

the soil physical properties required for the SPHY model were derived

using pedo-transfer functions (Nemes et al., 1999). Detailed maps (5-m

resolution) of the Hupsel Brook catchment, containing the saturated

hydraulic conductivity and clay layer depth, were obtained from soil

samples gathered throughout the years by Wösten et al. (1985). These

maps contain more detail than the 1:50,000 soil map, and were

therefore used to derive a 250-m resolution Ksat and clay depth map,

using bilinear interpolation. The clay layer is almost impermeable and

its depth varies between 1.5 m in the Southeast to 12m in the West. We

have assumed this layer to be completely impermeable in the model,

and therefore the three soil layers in the SPHY model represent the soil

properties of the Hupsel catchment untill the clay layer. Because of the

shallow clay layer depth, the total thickness of the three SPHY soil

layers is restricted to 1.5m for locations where the clay layer resides 1.5

below the surface. SPHY is generally applied using a rootzone thickness

of 0.4 m, meaning that 1.1m is left for the subzone and groundwater

layer. To guarantee i) the integration of the Hupsel Brook catchment’s

soil hydraulic properties (untill the clay layer) into the three soil layers

of the SPHY model, and ii) maintain representative SPHY model soil

layer depths, we need to scale the thickness of these layers for those

cells where clay depth is >1.5m. This was achieved by fixing the

rootzone layer thickness at the generally applied 0.4m, while ap-

pointing a minimum thickness of 0.9m for the subzone and 0.2 m for

the groundwater layer. For pixels where clay is >1.5m below the sur-

face, the layer thicknesses of the subzone and groundwater layer were

scaled using the pixel’s clay depth and the area’s maximum and

minimum clay depth. The meteorological station in the Hupsel Brook

catchment (Fig. 1) provides hourly values for rainfall and ETr , which

were used to force the SPHY model for the period 2000–2009.

4. Results

The results of the model calibration are described in Section 4.1. To

evaluate the impact of the limited sampling of a given number of rain

gauges on the hydrological simulations of a small rural lowland

catchment, we analyzed the hydrological response using radar rainfall

as input (Section 4.2), and compared that simulation to those obtained

using the bootstrapped rainfall fields as input. The uncertainties in-

volved in sampling a given number of rain gauges are analyzed for two

different time frames; the overall uncertainty we may experience during

one year (Section 4.3), and the uncertainty during individual events

(Section 4.4). The overall uncertainty focuses on basin-averaged fluxes

(Section 4.3.1) as well as the spatial variability of these fluxes (Section

4.3.2).

4.1. Model calibration

With 2000 as initialization year, SPHY was calibrated using dis-

charge measured at the outlet during the period 2001–2009. No dis-

charge observations were available for 2004, the first 3 months of 2005,

and from August 2006 through March 2007. Table 1 shows the opti-

mized model parameters that were obtained through calibration using

the Model-Independent Parameter Estimation (PEST) package

Fig. 7. 5th to 95th interpercentile range of the average hourly CV for a) rainfall, b) soil moisture, and c) the ratio between the average hourly CV of soil moisture and

rainfall. Results are shown as function of the number of gauges (pixels).

W. Terink et al. Journal of Hydrology 563 (2018) 319–335

325



(Doherty, 2005). PEST optimizes the parameters using the Gauss-Mar-

quardt–Levenberg (Fletcher, 1973) method for which the discrepancies

between model simulations and corresponding observations are re-

duced to a minimum in the weighted least squares sense.

Observed vs. calibrated simulated discharge is shown in Fig. 3. For

the calibration period 2001–2009 a Nash–Sutcliffe (NS) efficiency

(Nash and Sutcliffe, 1970) of 0.70, Root-Mean-Squared-Error (RMSE) of

6.56mm, and Bias of −8.7% were obtained. Strong seasonal discharge

patterns can positively affect the NS because a model is generally well

capable of simulating these seasonalities. Therefore, we have calculated

the NS for some individual years as well. This resulted in NS-values of

0.73, 0.82, 0.69, and 0.63 for 2001, 2002, 2008, and 2009, respec-

tively. Based on these numbers we conclude that the discharge dy-

namics of the calibrated model can be considered as “good” (Foglia

et al., 2009). The average annual rainfall for this period is 793mm, and

SPHY simulates an average annual discharge of 287mm, an actual

evapotranspiration of 505mm, and a change of storage of 1mm. The

negative model bias (-8.7%) indicates a slight underestimation of the

average observed discharge (25mm). Based on the performance in-

dicators and water balance we consider the calibrated model suitable

for the remainder of this study.

4.2. Hydrological response using radar rainfall

This section analyzes the hourly radar rainfall throughout the hy-

drological year May 1993 – April 1994, and its impact on the simulation

of soil moisture and discharge. Fig. 4 shows boxplots of hourly spatial

standard deviations (σR; top left) and spatial coefficients of variation

(CVR; top right) of the radar rainfall product (both plots show the hourly

results combined per month), the simulated soil moisture content in the

rootzone (bottom left), and the resulting brook discharge at the outlet

(bottom right). Results are based on the hydrological year May 1993 –

April 1994. Basin-average radar rainfall is shown in the bottom plots as

well. Rainfall totals 789mm over the entire year, and shows the highest

intensity during November (16.3 mmh−1). The spatial variability of

radar rainfall, expressed as σR, is also highest for this event. December

Fig. 8. 5th to 95th interpercentile range with CVs of rainfall (R) and soil moisture (S). Percentiles are taken over the number of bootstrap samples and are shown on

the y-axis, while the results obtained using radar are shown on the x-axis. Results are shown for 1, 5, 10, 20, 40, 60, 80, and 100 stations, indicated as st. For rainfall

there is no CV for 1 station, and is therefore not shown.
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receives the largest bulk of rainfall, and is characterized as the month

with the highest spatial variation in rainfall. The CVR for this month, as

well as for other winter months, are small compared to those in

May–August, which is due to the larger amount of winter precipitation.

May is characterized by the highest CVs, being the result of a few

rainfall events with a relatively small amount of rainfall, but with high

spatial variability. The large amount of rainfall, together with the high

soil moisture content and low evapotranspiration, results in most dis-

charge being generated during December 1993 and January 1994. The

5th and 95th percentiles indicate that there is substantial spatial var-

iation in the soil moisture content, which is mainly driven by the spatial

distribution of rainfall. The soil properties account for the remaining

spatial variation in soil moisture content, which is more evident during

summer months when there is less rain and soil moisture contents are

rather low. As a result, hardly any discharge is simulated during the

first 5 months. Since rootzone soil moisture contents range between 20

and 30mm (in a rootzone of 400mm) during summer, and SPHY re-

duces the amount of evapotranspiration if the soil moisture content in

the rootzone drops below wilting point (pF3.0≈49mm), we notice a

relatively strong reduction in evapotranspiration (∼25%). Table 2

shows the water balance as simulated by the SPHY model for the hy-

drological year May 1993 – April 1994.

4.3. Overall uncertainty

4.3.1. Basin averages

For each number of gauges, 106 time series of areal rainfall fields

were constructed using bootstrapping and inverse distance interpola-

tion (Section 3.2). The SPHY model was forced with these 106×106

rainfall fields and the resulting basin averaged fluxes are compared

with those obtained using the radar rainfall as forcing. Fig. 5 expresses

the uncertainty in basin average rainfall, soil moisture, discharge, and

evapotranspiration as function of the number of virtual rain gauges.

Uncertainty is expressed as the 5th to 95th interpercentile range of 106

bootstrap samples with 8760 hourly differences between interpolated

virtual rain gauges and the radar rainfall. Differences are taken relative

with respect to the “true” value averaged over the hydrological year

(Table 2). Fig. 5 shows that if we use only one rain gauge to represent

the areal Hupsel Brook rainfall, we may introduce an uncertainty that

could be more than six times the average hourly rainfall, which com-

pares to an uncertainty of nearly 0.54mmh−1. This means that 90% of

the time, the absolute error is smaller than 0.54mmh−1 for hourly

rainfall accumulations if only a single rain gauge is available. Adding

more rain gauges would reduce this uncertainty rapidly; with 10 rain

gauges the uncertainty reduces to twice the average hourly rainfall, and

more than 40 gauges are required to reduce the uncertainty to a value

smaller than the average hourly rainfall.

The number of gauges used to estimate the areal rainfall of the

Hupsel Brook catchment has an impact on the simulated hydrological

behaviour of this small rural lowland catchment. The uncertainty as-

sociated with estimating areal rainfall has the largest effect on the si-

mulated discharge, and to a lesser extent on the simulated soil moisture

and actual evapotranspiration. The topsoil, which basically contains

loamy sand, has a high saturated hydraulic conductivity (basin average

213mmh−1). As a consequence, any water surplus above field capacity

leaves the soil column relatively quickly as discharge, hence the effect

of erroneus areal rainfall estimation on the simulation of soil moisture

content is minor in this case. One rain gauge may result in a soil

moisture simulation uncertainty that is 8% of the annual average

rootzone soil moisture content (∼79mm), which corresponds to
∼6mm. Although with one rain gauge the uncertainty in simulated

hourly discharge will be smaller than the average hourly discharge, it

may approach 60% of the average hourly discharge. This inter-

percentile range is reduced to ± 20% if 10 rain gauges are used. With

40 rain gauges or more the uncertainty in simulated hourly discharge

becomes smaller than 10% of the average hourly discharge. For the

actual evapotranspiration, there is a 90% probability that the un-

certainty is within 10% of the average evapotranspiration if one rain

gauge is used, which corresponds to ∼0.1mm d−1.

Fig. 6 shows from top to bottom for 1, 5, 10 and 20 gauges, the

values obtained using radar rainfall (i.e., the average of all 106 pixels)

on the x-axis versus the 5th and 95th percentiles of the 106 bootstrap

samples on the y-axis. The temporal resolution of interest is hourly. It is

clear that if more rain gauges are used to estimate the areal rainfall, the

simulated hydrological fluxes get closer to those simulated using the

original radar rainfall fields. The near-linearity for soil moisture and

actual evapotranspiration indicates that one rain gauge is sufficient to

obtain a reasonably bias-free simulation of these fluxes in the Hupsel

Brook catchment. With 10 rain gauges or more, the simulated values for

soil moisture and actual evapotranspiration are almost identical to

those simulated using radar rainfall. With one rain gauge we estimate a

95th percentile basin-average rainfall intensity of 35mmh−1, while

radar indicates 17mmh−1 for this paricular event. For discharge the

95th percentile is 1.7mmh−1 with one rain gauge, while this is

Fig. 9. Left: boxplot for the 10–11 December 1993 rainfall event, with each box representing the spatial radar rainfall distribution. The boxes outer ends correspond

to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile value. Red crosses are outliers and correspond to values outside the
∼99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval. Right: radar rainfall on 11 December 1993 between 7:00 and 8:00.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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0.6 mmh−1 if true basin-average rainfall is used as input. This is related

to the fact that the distribution of hourly rainfall accumulations is ex-

tremely asymmetrical. Adding 4 rain gauges results in an appreciably

reduced uncertainty of the simulated discharges. Although we may still

over- or underestimate the discharge during some events, the addition

of 4 gauges improves the simulation of discharge substantially. With

more than 10 rain gauges we are able to have a areal rainfall estimate

that is more or less equal to that calculated using radar rainfall.

4.3.2. Spatial variability

Fig. 7 shows the 5th to 95th interpercentile range of the average

hourly CV for rainfall (a) and soil moisture (b). The average CV has

been calculated as the average of all hourly CVs in one particular

bootstrap sample. The true average hourly CV is 1.8, being substantially

higher than the CV obtained using two rain gauges, which ranges be-

tween 0 and 0.4. A nearly linear increase in CV can be seen if more rain

gauges are added. It is also interesting to note that it takes more rain

gauges to match the spatial variability of radar rainfall, than the

number of gauges required to match the basin average radar rainfall

(Fig. 5).

Although the CV of rainfall increases if more rain gauges are used,

this is less evident for the CV of soil moisture. The spatial distribution of

soil moisture content is not only a function of rainfall, but also of soil

properties, land cover, and model properties. This explains why a un-

ique combination of a few rain gauges, soil properties and land cover

may lead to a slightly higher soil moisture CV than what may be

Fig. 10. Boxplots showing, as function of the number of rain gauges, the uncertainty in basin average rainfall (R), discharge (Q), and soil moisture (S) for the 10–11

December 1993 rainfall event. The boxes outer ends correspond to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile

value. Red crosses are outliers, and correspond to values outside the ∼99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval.

The black line represents the “true” values for rainfall, discharge, and soil moisture, based on the complete radar rainfall fields. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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obtained by using true rainfall. If the soil moisture CV obtained using a

few rain gauges is larger than the soil moisture CV obtained using radar

rainfall, then the soil hydraulic properties and land cover properties

have a larger contribution to the soil moisture CV than rainfall alone.

However, it is clear that the bulk of the interpercentile range is below

0.151 (obtained using true rainfall), which implies that the largest

contribution to the soil moisture CV comes from rainfall. To evaluate

more precisely to what extent the captured spatial rainfall variability,

being a function of the number of rain gauges, accounts for the spatial

soil moisture distribution, and to what extent the spatial soil moisture

distribution is due to the memory of the hydrological model, the

average CV of soil moisture is divided by that of rainfall. We have

plotted this ratio (5th and 95th percentile) as function of the number of

rain gauges (Fig. 7, c). Using one rain gauge obviously results in a zero

CV for rainfall and therefore results are plotted for more than two rain

gauges. Based on this figure we may conclude that on average at least

three rain gauges are required to add more spatial variation in the si-

mulated soil moisture content of a small rural lowland catchment than

is contributed by the model’s memory (soil properties and land cover).

It is clear that the number of rain gauges quickly overrules the spatial

variation in soil moisture content that is contributed by the model’s

memory.

Fig. 8 shows the hourly CVs obtained using radar rainfall (x-axis) vs.

the 5th and 95th CV percentiles of the 106 bootstrap samples (y-axis).

Results are shown for 1, 5, 10, 20, 40, 60, 80, and 100 stations, and are

shown for rainfall (R) and soil moisture (S). These are hourly CVs and

therefore not averaged over the entire year, as was done in Fig. 7. As

shown before, a substantial number of rain gauges is required to cap-

ture the same spatial variability in rainfall as obtained when using radar

rainfall. More than 80 rain gauges are required to capture the spatial

variability of radar rainfall. This is a substantial number of rain gauges

(approx. 12 gauges km−2), considering the small size of the Hupsel

Brook catchment (6.5 km2). The number of rain gauges required to

match the spatial variability of radar rainfall is therefore substantially

higher than the number of gauges required to match the basin average

radar rainfall (Fig. 6). Using radar rainfall as input, the hourly average

CV of simulated soil moisture equals 0.15 (Fig. 4). The small hourly CVs

of simulated soil moisture (Fig. 8) indicate that the spatial variation in

soil moisture is relatively small, which results from the high saturated

hydraulic conductivity (on average 213mmh−1) that causes any water

surplus above field capacity to leave the soil column relatively quickly

as discharge.

4.4. Single events

Section 4.3 focused on the uncertainties in rainfall, soil moisture,

discharge, and evapotranspiration that may occur within the time

frame of one year as a function of the number of rain gauges used for

estimating the areal rainfall. This section continues this analysis by

analyzing two rainfall events in detail. For these events the SPHY model

was forced using the same bootstrapped rainfall fields for the rain

gauges as done in Section 4.3, assuming soil moisture is initially at field

capacity.

4.4.1. 10–11 December 1993

The first event starts on the 10th of December 1993 at 15:00 (local

time) and ends on the 11th of December 1993 at 09:00. The “true”

radar rainfall, including the spatial rainfall distribution, is shown in

Fig. 9. This event is interesting because it rains continuously with a rate

of approx. 3 mmh−1 for 18 h, with several pixels giving significantly

higher rainfall intensities. The rainfall sum for this event is approx.

35mm for the majority of pixels, and ranges from 130 to 160mm for a

few pixels. This substantial difference in rainfall intensity between the

radar pixels may be questionable. Therefore, the rainfall intensities for

all radar pixels during the highest intensity rainfall hour (11 December

1993, 07:00–08:00) are shown in the right plot of Fig. 9. Since the

higher rainfall pixels are clustered, as one would expect for rainfall, we

conclude that the radar signal can be trusted for this event.

Fig. 10 reflects the uncertainty in basin average rainfall (R), dis-

charge (Q), and soil moisture (S) for this event, as function of the

number of rain gauges. Using the radar rainfall the discharge peaks at

13:00, which is 4 h after the last hour with rainfall, whereas the soil

moisture content declines immediately after it stops raining. It is clear

that the uncertainty in basin-average rainfall, discharge, and soil

moisture can be signficant if only one rain gauge is used. Especially at

the end of the event, where radar rainfall intensities are highest, the

areal rainfall estimated using one rain gauge can vary between 0 and

35mmh−1. Compared to the radar rainfall intensity (approx.

5 mmh−1), the potential error ranges between −100 and 600%. The

resulting uncertainty in the simulated discharge increases until the river

discharge peaks, which is 21 h after the start of the event. At this peak

the reference discharge is approximately 0.6 mmh−1, whereas using

only one rain gauge may result in a simulated discharge of

0.2–2mmh−1, which is an uncertainty that ranges between −67 and

233%. Interestingly, the uncertainty in simulated soil moisture content,

which is much smaller compared to that of discharge, starts increasing

after it has stopped raining, and ranges between −6 and 2%. Adding

more rain gauges to estimate the areal rainfall results in better simu-

lations for discharge and soil moisture, with the largest positive effect

on discharge. With 5 rain gauges the range of potential errors in dis-

charge at the time of peak has dropped to between−50 and 100%. This

range becomes −17 to 33% if 25 rain gauges are used.

4.4.2. 11–13 November 1993

The second selected rainfall event starts on the 11th of November

1993 at 19:00 and ends on the 13th of November 1993 at 01:00. Fig. 11

shows the “true” radar rainfall for this event, including the spatial

rainfall distribution. Compared to the first event this event shows a

different pattern; for a duration of 7 h we notice some initial rainfall

with intensities between 0 and 9mmh−1, with a few pixels measuring

10–14mmh−1 during one specific hour, followed by a period of 12 h

Fig. 11. Boxplot for rainfall event on 11–13 November 1993 with each box

representing the spatial radar rainfall distribution. The boxes outer ends cor-

respond to the 25th and 75th percentile values, and the horizontal line corre-

sponds to the 50th percentile value. Red crosses are outliers, and correspond to

values outside the ∼99.3% coverage. Hours on the x-axis correspond to the end

hour of each hourly time interval. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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without rain, and finally another event ending at 18:00 with rainfall

intensities of 5–35mmh−1. This day is relevant because it actually

contains two different events; a bit of initial rainfall followed by a dry

spell and finally a second event giving the bulk of the rainfall, being an

accumulated 15–48mm of rain.

Fig. 12 shows the uncertainty in basin average rainfall (R), dis-

charge (Q), and soil moisture (S) for this event, as function of the

number of rain gauges. We can distinguish two discharge peaks as a

result of the two rainfall events. As expected we notice a recession in

the soil moisture contents after the end of each rainfall event. It is clear

that, although the uncertainty in basin-average rainfall is substantial for

this event (−67 to 133%), the uncertainties in simulated discharge and

soil moisture, using one rain gauge, are smaller compared to the 10–11

December event. This can be explained by the nature of this event,

being less spatially variable (Fig. 11 vs. Fig. 9), with a lower total

rainfall sum and a dry spell in between the two events. The 10–11

December event was characterized by an 18-h period of continuous

rainfall with intensities between 3 and 18mmh−1, with a few pixels

giving 130–160mmh−1. This resulted in a rising discharge peak with

errors increasing in time as the peak grew in size, which is certainly not

the case for the 11–13 November event. One rain gauge for this event

results in a simulated discharge error of 0.10–0.25mmh−1, which is
−40 to 100% of the reference discharge. With 5 rain gauges the error in

areal rainfall ranges between −33 and 100%, while the error in simu-

lated discharge ranges between−20 and 20%. Adding more rain gauges

reduces this error less rapidly compared to that of the 10–11 December

event. Errors made in the simulation of soil moisture contents are ne-

glegible for this event.

Fig. 12. Boxplots showing for 1, 5, 10, 20 and 25 rain gauges the uncertainty in basin average rainfall (R), discharge (Q), and soil moisture (S) for the 11–13

November rainfall event. The boxes outer ends correspond to the 25th and 75th percentile values, and the horizontal line corresponds to the 50th percentile value.

Red crosses are outliers, and correspond to values outside the ∼99.3% coverage. Hours on the x-axis correspond to the end hour of each hourly time interval. The

black line represents the “true” values for rainfall, discharge, and soil moisture, based on the complete radar rainfall fields.
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5. Discussion

It is well-known that data obtained from weather radars are affected

by multiple sources of error (Hazenberg et al., 2011). This was also

demonstrated by Berne et al. (2005), who found a significant under-

estimation of observed discharge if the lumped HBV model was forced

with radar estimated rainfall. Data from the X-band radar used in the

current study were not corrected for these sources of error, and may

therefore be less representative for the “true” rainfall. Local errors in

the radar rainfall fields, known as residual clutter, were removed using

a variable threshold (Section 2.2). The unrealistically high spatial

variation caused by residual clutter in the radar data was effectively

removed by applying this variable threshold. A comparison between the

hourly CVs of the uncorrected and corrected rainfall fields indeed

shows a reduction in spatial variation (Fig. 13). Residual clutter that

was not removed through this method could create additional spatial

variation that would not be there in the “true” rainfall, and could

therefore influence our results. However, since the synthetic rainfall

products are derived from one and the same X-band radar product, the

relative difference between them is not affected by the sources of error

that could be present in the X-band rainfall data, and the corrections we

have applied to it. Hence, we argue that this dataset is suitable to study

the sensitivity of a hydrological model to the input rainfall sampling.

The areal rainfall over the Hupsel Brook catchment for each syn-

thetic rainfall product was calculated using Inverse Distance Weighted

(IDW) interpolation (Shepard, 1968). Initially, two different inter-

polation techniques were used to construct synthetic rainfall products

Fig. 13. Spatial CVs of hourly radar rainfall before clutter removal and scaling

(x-axis) vs. spatial CVs of hourly radar rainfall after clutter removal and scaling

(y-axis).

Fig. 14. Hourly standard deviations of radar rainfall pixels (σR) as function of the hourly basin average radar rainfall (R). Linear fits for rainfall intensities⩽2mm h−1

and intensities >2mmh−1 are shown as well. Both axes are logarithmic.
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from the high-resolution rainfall radar, namely simple averaging and

IDW. Comparison of the resulting rainfall fields from these interpola-

tion techniques showed hardly any difference in terms of rainfall depth

or spatial variation. The selected IDW interpolation technique is a re-

latively “safe” interpolation technique; i.e. IDW is an exact interpolator

and the maximum and minimum values can only occur at the sample

points. Other interpolation techniques (e.g. Cubic Spline (Wegman and

Wright, 1983)) may lead to values outside the data range, which could

increase the spatial variation and thus uncertainties as well. The near

linear increase in CV (Fig. 7) could be the result of the chosen inter-

polation method. This was further analyzed (not shown) by calculating

the CV over the bootstrapped “rain gauge” pixels only; i.e. the calcu-

lated CV is independent of the interpolation method. Again, a linear

increase in CV was noticed, meaning the linear increase in CV is in-

dependent of the chosen interpolation method.

The original images from the high-resolution X-band radar (120m

range resolution, 1.875-degree angular resolution, 16 s temporal re-

solution) were aggregated to a 250m spatial resolution and hourly

temporal resolution. Especially the temporal aggregation from 16 s to

1 h would significantly impact our results if our catchment would have

been fast responding, where short-duration storm events lead to a dis-

charge response at the outlet within the timeframe of an hour. This is

particularly true for urbanized catchments (Gires et al., 2012; Ochoa-

Rodriguez et al., 2015; Peleg et al., 2017). However, the Hupsel Brook

catchment has a response time of three hours (Brauer et al., 2016),

hence the hourly resolution is sufficient for the purpose of this study.

The selected hydrological model normally runs on a 250m spatial re-

solution, which is the main reason for aggregating the original 120m

range resolution to the 250 square-grid resolution. This aggregation

resulted in 106 radar pixels for our study area, which is far more than

what can be obtained from the operational KNMI C-band radar (6–7

pixels only).

If the X-band SOLIDAR data would have been stationed in or near

the Hupsel Brook catchment, then we could have used the rain gauge

located in the Hupsel Brook catchment to correct the X-band derived

rainfall fields, and eventually use those corrected fields to calibrate the

SPHY model. A calibrated model based on the same radar rainfall fields

as used for the “true” rainfall product and synthethic rainfall products

can be considered as the most optimal situation. In order to have the

best possible representation of the hydrological situation of the Hupsel

Brook catchment we forced the model with locally measured rainfall

and evapotranspiration fields, and calibrated the model using ten years

of observed discharge records, which is a similar approach to Brauer

et al. (2016). In analyses of extreme precipitation over The Netherlands

(Overeem et al., 2008), as well as analyses of space–time correlation

structure (Van De Beek et al., 2011; Van de Beek et al., 2012), it is

typically assumed that rainfall over The Netherlands can be considered

statistically homogeneous. The Netherlands is a small and flat country,

and climatological differences are therefore small (KNMI, 2018). The

annual average rainfall in the Netherlands ranges between 700 and

900mm (KNMI, 2018). After the removal of residual clutter, the annual

rainfall for all pixels was 551mm. Because of this climatological dif-

ference, we corrected the hourly radar rainfall fields with a constant

factor to match the annual rainfall sum of Hupsel as recorded by the

local rain gauge in the Hupsel Brook catchment. This is a justified ap-

proach, because i) for such a small lowland catchment one may assume

that the annual rainfall sum for all radar pixels is equal (Overeem et al.,

2008; Van De Beek et al., 2011; Van de Beek et al., 2012), and ii) this is

not a validation study but a sensitivity analysis.

Fig. 6 (top-left plot) shows that uncertainties are larger with higher

rainfall intensities. Rainfall tends to be more localized for higher in-

tensities, thus increasing the spatial variation within the catchment.

This increases the likelihood of sampling a rain pixel with more/less

rainfall than what would be the case if rainfall has a lower intensity

with a more uniform spatial distribution. This is also shown by Fig. 14,

in which the hourly standard deviation of the radar rainfall pixels (y-

axis) is plotted as function of the hourly basin average radar rainfall (x-

axis). Higher rainfall intensities are associated with higher values for σR,

and thus a higher uncertainty. The increase in σR is smaller compared to

the increase in basin average rainfall for intensities smaller than ap-

proximately 2mmh−1. For rainfall intensities >2mmh−1, the increase

in σR tends to be stronger, indicating an even larger uncertainty for

convective systems. Other studies (e.g. Nicótina et al., 2008;

Nikolopoulos et al., 2011; Ochoa-Rodriguez et al., 2015; Gires et al.,

2012) found that larger catchments have a dampening effect on the

rainfall variability, and thus the associated uncertainty. Although

Ochoa-Rodriguez et al. (2015) and Gires et al. (2012) focused on ur-

banized catchments, we feel that the interplay of the catchment size

with rainfall variability and the associated uncertainty in the simulation

of the hydrological response needs more attention for rural lowland

catchments with sizes larger than the 6.5 km2 used in the current study.

This study revealed that areal rainfall estimations are very sensitive

to the number and locations of rain gauges, which was also found by

Bell et al. (2000) and Faurès et al. (1995). We found that one rain gauge

may lead to an uncertainty in areal rainfall that is six times larger than

the average hourly rainfall. The associated uncertainty in discharge

simulations using one rain gauge is smaller, but is still 60% of the

average hourly discharge, and is reduced to ± 20% if 10 rain gauges are

used. Berne et al. (2005) found that the uncertainty in hourly discharge

simulations associated with the sampling uncertainty of mean areal

rainfall over a ∼1600 km2 catchment from 10 rain gauges was ± 25%,

whereas we found an uncertainty of ± 20% if 10 rain gauges are used

over a∼6.5 km2 catchment. Their associated rain gauge density is 1 rain

gauge per 160 km2, whereas our rain gauge density is 1 rain gauge per

0.65 km2 (i.e., much higher). Given these differences in rain gauge

density, we may conclude that the uncertainty found in the current

study is substantially larger than found by Berne et al. (2005). A logical

explanation to this is that they forced a lumped model (HBV), whereas

we maintained the spatial rainfall fields of the rainfall radar by forcing

a distributed hydrological model. This increases the chance that a radar

pixel with extreme rainfall coincides with a model pixel with extreme

high or low conductivities, or that an extreme rainfall pixel occurs near

or far away from the outlet. Additionally, we have used a very high

spatial resolution X-band radar compared to the C-band radar used by

Berne et al. (2005). The high spatial resolution of this X-band radar

increases the chance of sampling a pixel with more extreme rainfall,

and discharge simulations could thus be more uncertain. An interesting

follow-up would therefore be to repeat the current study for the Hupsel

Brook catchment using the lumped HBV (Lindström et al., 1997) or

WALRUS (Brauer et al., 2014) model instead of the SPHY model as

hydrological model. However, since these models are lumped it is not

possible to evaluate soil moisture and evapotranspiration processes

spatially, but only as aggregated processes over the catchment area.

The current study only analyzed the impact of different spatial

rainfall resolutions on the hydrological simulations of a small lowland

catchment. Peleg et al. (2013) analyzed the number of rain gauges re-

quired to adequately measure rainfall in a typical radar subpixel scale,

and found that the uncertainty from averaging a number of rain stations

per radar pixel decreased if timescales where increased from one

minute to one day. Although the spatial resolution (1 km range re-

solution, 1.4-degree angular resolution) of the radar used in their study

is coarser compared to the aggregated X-band radar used in our study,

the effect of aggregating radar rainfall to temporal resolutions larger

than one hour was not addressed in our study. Given the ∼3-h response

time of the Hupsel Brook catchment, time-scales smaller than one hour

are less relevant to investigate, but the impact of aggregating time-

scales to temporal resolutions larger than one hour is a crucial question

to answer in a future study.

Although SPHY was successfully calibrated for this study, this model

has some limitations that could affect the results found in this study.

First, surface runoff in SPHY is only conceptualized as saturation excess

runoff (Hewlettian runoff (Dunne, 1978; Hewlett, 1961)). Infiltration
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excess runoff (Hortonian runoff) is not conceptualized in SPHY, which

means that in the event where the rainfall intensity exceeds the in-

filtration capacity, the runoff in SPHY is underestimated. In other

words, the uncertainty in simulated discharge, as function of the

number of rain gauges, could be larger than that found in this study if

rainfall intensities are high. However, since the saturated hydraulic

conductivities of this specific lowland catchment are rather high, the

chance that the rainfall intensity exceeds the infiltration capacity and

thus that the simulated runoff underestimates the actual runoff is small.

Second, the hourly model resolution of SPHY in relation to the hourly

aggregated radar rainfall would be a limiting factor if the focus would

be on fast responding catchments, e.g. urbanized catchments with re-

sponse times in the order of minutes. For the lowland catchment used in

this study, however, the hourly model resolution is not a limiting factor

because the response time of the Hupsel Brook catchment is approxi-

mately 3 h (Brauer et al., 2016). Finally, streamflow routing in SPHY is

conceptualized as a rather simple process where all specific cell-runoff

is accumulated over the channel network and delayed with a single

routing coefficient kx (Terink et al., 2015). This means that the model’s

flow velocity is not affected by channel properties such as slope,

roughness, and wetted perimeter, which are generally implemented in

more advanced routing methods that use the Manning equation

(Manning, 1889) for example. Although this has not been evaluated in

this study, we think that the simple routing process implemented in in

SPHY has a minor effect on the simulated discharge because the Hupsel

Brook is a small lowland catchment with quite uniform channel slopes.

According to Warmerdam (1979), however, the presence of drains and

culverts can lead to a fast discharge response if the catchment is satu-

rated. Since culverts and drains are not conceptualized in SPHY, we feel

our results are less reliable if soils are saturated and water levels in the

brook are very high. An interesting follow-up study would therefore be

to use a spatially distributed model with a more hydraulically based

routing scheme that allows for the implementation of drains and cul-

verts.

Other factors that may have an effect on the results presented in this

study are the soil hydraulic properties and land use of the Hupsel Brook

catchment. An example of this is the small uncertainty in simulated

basin-average soil moisture contents and the spatial variablity thereof.

This is basically due to the high saturated hydraulic conductivity of the

topsoil, which causes any water surplus above field capacity to leave

the soil relatively quickly as discharge, and hence the effect of erro-

neous rainfall estimation on the simulation of soil moisture is minor.

The same holds for the simulation of evapotranspiration: due to the

small amount of rainfall during pre-summer and summer, soil moisture

contents are rather low (between 20 and 40mm in a rootzone of

400mm), which leads to a too strong reduction in evapotranspiration

because SPHY reduces the amount of evapotranspiration if the soil

moisture content drops below the wilting point (∼49mm). Results in

our study are not affected by different intial soil moisture conditions

due to the high saturated hydraulic conductivity of the topsoil in

combination with the relatively low rainfall sum at the start of the

hydrological year. However, the effect of different initial soil moisture

conditions cannot be ignored for other basins. This was highlighted by

Paschalis et al. (2014), who quantified the importance of various

characteristics of the spatial and temporal structure of a rainfall event

in the generation of a flood for different initial conditions of soil

moisture. They found that initial soil moisture conditions and their

interaction with the space–time distribution of precipitation are of

paramount importance. Despite the uncertainties, we feel that the re-

sults presented in this study are representative for small (∼6.5 km2) free

draining lowland catchments and soils with a high soil hydraulic con-

ductivity.

6. Conclusions

The objective of this study was to evaluate the impact of the

sampling of spatially variable rainfall by a given number of rain gauges,

on hydrological simulations of a small rural lowland catchment. The

most important results can be summarized as:

1. Using one rain gauge to represent the Hupsel Brook rainfall may

lead to a potential error of more than six times the average hourly

rainfall. More than 40 rain gauges are required to reduce this po-

tential error to values <0.1 mmh−1. The associated uncertainty in

simulated discharge may approach 60% of the average hourly dis-

charge. This is reduced to ± 20% if 10 rain gauges are used, and

± 10% if 40 rain gauges are used;

2. Because of the high saturated hydraulic conductivity of the top soil,

the number of rain gauges used to represent the Hupsel brook

rainfall hardly affects the simulation of soil moisture;

3. At least 12 gauges per km2 are required to capture the spatial

rainfall variation that is present in radar rainfall estimates;

4. On average, at least three rain gauges are required to add more

spatial variation in the soil moisture content than is contributed by

the model’s memory.

5. The uncertainty in the estimation of areal rainfall and simulation of

discharge is larger with higher rainfall intensities;

6. For a single rainfall event (18-h duration, average intensity of

3mmh−1) it was found that the uncertainty in peak areal rainfall

estimated using one rain gauge may range between −100% (i.e., it

does not rain on the gauge) and 600%. The associated uncertainty in

simulated discharge for this event ranges between −67 and 233%.

With 25 rain gauges the uncertainty in simulated discharge is still in

the range of −17 to 33%;

7. The number of rain gauges does not affect the timing of the simu-

lated peak discharge response, which is likely due to the high sa-

turated hydraulic conductivity of the top soil, and the resulting short

response time of the catchment.

Despite the influence of the properties of the catchment and the

hydrological model on the results, we feel that the results contribute to

our practical and scientific understanding of estimating areal rainfall at

high spatial resolutions in order to be able to accurately describe the

hydrological behaviour of small rural lowland catchments. Ideally, the

approach followed in the current study should be repeated for different

temporal resolutions, larger catchments, different climatological zones,

and using a variety of model conceptualizations.
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